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Outline

Ultrashort, high power laser

Oscillator
Stretcher

Longitudinal quantities: 
time duration, spectrum, 
spectral phase, ….

Focusing and transverse 
quantities: wavefront 
(transverse phase), ...

Diagnostics!



        Ultrashort/ultraintense laser interaction with matter 
can be fruitfully employed to accelerate charged particles to 
high energy
        The underlying processes are different for electrons and 
protons/light ions 
        Compact, “table-top” accelerators (thanks to the huge 
accelerator gradients)

Proton (and light ion) beams can be accelerated up to 
~10MeV/nucleon via the so-called TNSA process (and 
others)

Motivations (1): Laser-driven particle acceleration at ILIL



Electrons can be accelerated up to relativistic energy 
(several 100s MeV up to ~10GeV) via the so-called Laser 
WakeField Acceleration (LWFA) process 

A “historical” taste of the literature on LWFA
1979: proposal by Tajima&Dawson

2004: “high quality” beams reported

2006: GeV energy level achieved

Nowadays: routine production of stable e- bunches,
Secondary X/gamma-ray sources, energy increase 
up to the ~10GeV level

Motivations (2): Laser WakeField Acceleration (of electrons) 



Motivations (3). Very High Energy Electrons (VHEE) for radiotherapy

Electrons with energy in the range ~100-250 MeV (so-
called Very High Energy Electrons) are particularly 
promising for novel protocols/modalities in radiotherapy
Recent experiments aimed at demonstrating the feasibility 
of advanced irradiation modalities (similar to current 
photon based radiotherapy) with laser-driven VHEE pencil 
beams 

L. Labate et al., Sci. Rep. 10, 17307 (2020)

Multi-field irradiation 

Intensity modulation



Main laser system (until may 2025):
TiSa CPA, ~25fs, >5J energy (~220TW peak power), 1Hz rep rate

A 100TW class ultrashort laser system: The ILIL laser



Bandwidth of a typical ultrashort laser

Uncertainty relation (between the w-t 
conjugated variables):

Expressing it in terms of a wavelength bandwidth:

For a Fourier-transform limited pulse (we’ll see what 
this does mean later)

Putting some numbers in, we find that ~30fs laser 
pulses require (at least) a ~30nm bandwidth



The Ti:sapphire active medium

Optical pumping using 2nd 
harmonic laser radiation from Nd 
Q-switched solid-state lasers



Laser oscillator: optical cavity + active medium (providing amplification when the population inversion is established by a pumping process)Optical cavity: longitudinal modes with regularly spaced frequencies: 
The resulting electric field  at a given point (for instance, at the output mirror) can be written as 
When the relative phase is equal to zero:1. Maxima of the resulting “pulse” repeat in time with a period 
2. The higher number of “modes” we consider, the shorter the resulting maximaWhat does it happen when I consider a non-null (random) phase?

Ultrashort laser oscillator: KLM

Random phases

A quick recap on mode-locking
“Locked” phases



Constant or linear dependence of the phase on the frequency  

It can be easily shown that, for
1. Power emitted as a pulse train, with a time separation between the pulses corresponding to the cavity round-trip2. The peak power grows as the square of the number of modes3. The FWHM of each pulse decreases linearly with the number of modes From a practical viewpoint, achieving a mode-locking is accomplished by inducing a periodic modulation of the gain of the cavity



KLM oscillators of high power lasers

→ example: saturable absorber

Mode-locking oscillator

A physical process is used, able to modulate losses in the 
cavity, which depends only on the instantaneous intensity of 
the laser (i.e., it doesn’t depend on any external source)

Optical Kerr effect

→ it leads to a (self) 
focusing of a beam with a 
transversely non-constant 
intensity

Optical scheme of a KLM oscillator

The “aperture” (iris) is not needed: overlapping between 
signal and pump acts to modulate the gain



~1nJ, ~10-100 fs, ~100MHz
~1nJ, ~1-100 ps, ~100MHz

~1-10J, ~10-100 ps, ~10Hz ~1-10J, ~10-100 fs, ~10Hz

Amplifying ultrashort pulse: The Chirped Pulse Amplification (CPA) technique



Diffraction grating(s) with pitch d

Thus, the optical path “spent” in the system depends 
upon the wavelength. At the exit, I have a longer and 
chirped pulse 

For each grating

A grating stretcher (or compressor): How it works



Amplifying (ultra)short pulses: Amplification stages

“Regenerative” amplifier

“Multi-pass” amplifier



Toward the characterization of the pulse:  time (longitudinal) description of an ultrashort pulse

At a fixed point in space, for a linearly polarized pulse, the electric field can be simply written as

The field envelope and the pulse intensity are 
related by the expression (A in V/m, I in W/cm2)

Absolute phase,
or carrier envelope phase (CEP)

Cosine pulse
Sine pulse

Adding a time dependent phase function results in a so-called 
chirped pulse

An instantenous frequency can be defined as 
Upchirped pulse
Downchirped pulse



Introducing the spectral amplitude and phase

Using Fourier analysis, the field and its Fourier transform can be written as

Most often, the so called “analytic signal” is used. 

Being E(t) real, its Fourier transform is a Hermitian function:

This means that the knowledge of the Fourier transform for positive frequencies is enough to fully retrieve the signal 

We can thus define, for convenience, a new function in the frequency domain, retaining only the positive part of the FT:

and the corresponding FT-1

Of course, the knowledge of one of the two description is enough to completely characterize the pulse.

According to the above observation, E+(t), which is called analytic signal, is enough to retrieve the “real” field E(t)



In the spectral domain we can introduce a spectral amplitude and a spectral phase as 

Spectral amplitude: proportional to the square root of I(w), the usual “spectrum” as measured by a spectrometer
What do the spectral amplitude and phase mean?

The spectral phase is basically the (relative) phase of each frequency in the waveform

What is the effect in the time domain?

Introducing the spectral amplitude and phase (2)



Time vs frequency space (behaviour)

Time domain Frequency 



*see D.N. Fittinghoff et al., IEEE J. Sel. Top. Quant. Electr. 4, 430 (1998) 

In general, the spectral phase can be expanded into a Taylor series: 

where, of course,

This holds for a well-defined pulse. Basically, it means that each term in the expansion produces a pulse broadening or 
distortion that is significantly smaller than that of the previous term (see * for a deeper discussion on the optical 
meaning)

A linear optical system acts on an input field by a multiplication by a (complex) transfer function in the frequency 
domain:

The spectral phase of the output pulse is thus modified 
according to

An initially unchirped pulse (                ) can acquire a chirp if                  

Why introducing the spectral amplitude and phase?

Terminology: 2nd order term → Group Velocity Dispersion (GVD), 3rd order term → Third Order Dispersion (TOD)

Spectral phase: Taylor expansion and the role of the different orders“ ”



Spectral phase: the meaning of the first orders (exercise)

Spectral phase expansion

 

“Reference” pulse with             , so that                             and  

On calculating the IFT, one gets

This corresponds to acquiring an absolute phase 

Pulse with a 1st order term

On calculating the IFT, one gets

This corresponds to a time shift of the pulse, with 

To summarize: constant and linear terms in the spectral phase have no effects 
on the pulse duration



Spectral phase: High order terms and pulse duration

For a pulse with a given bandwidth (and spectrum), the shortest duration is reached when no chirp occurs; in the 
frequency domain, this translates into the spectral phase exhibiting a constant or linear dependence upon w

We start calculating the pulse duration for a general pulse as 

Using the Plancherel’s identity and the equation aside
(easy to demonstrate)

 and finally, on introducing the spectral amplitude and phase and calculating the derivative

The first integral is ever positive and depends upon the spectral amplitude (or, the spectrum). As for the second one:

We saw above that the second term accounts, in the time domain,  for a pulse delay,                  so that the first two 
terms cancels out                   
Thus, a further (positive) contribution to the time duration exists if the spectral phase exhibits higher order terms (GVD, TOD, ...)
A pulse whose spectral phase only contains up to linear terms in w is called Fourier-transform limited: in the real domain, it features 
the smalles pulse duration compatible with the spectral width



Spectral phase modifications and time duration: a few examples

Unchirped (bandwidth limited) pulse, constant 
spectral phase

 
Unchirped pulse (bandwidth limited), shifted in 
time due to a linear (negative) spectral phase



Symmetrically broadened pulse, due to a 2nd 
order term in the spectral phase

 
3rd order spectral phase term, leading to 
quadratic group delay. In the time domain, 
oscillations appear before or after the main 
pulse, depending on the sign of the 3rd order

Spectral phase modifications and time duration: a few examples (2)



Spectral phase modification by common elements

 

Recall that

If dn/dl is not equal to zero (dispersion), each frequency will move with 
a different velocity and the pulse gets broadened (spectral phase wise, 
this results in a 2nd order not null)

Transparent media

For ordinary transparent media in the visible 
region, normal dispersion is encountered 
(dn/dl>0), which results in positive chirp 
(lower wavelengths arrive before higher ones)



Modifying the spectral phase: stretcher/compressor and Spatial Light Modulators

 

The usage of grating 
elements to stretch or 
compress a pulse introduces 
2nd order (and higher!) 
terms in the spectral phase, 
with both down (usually in 
a compressor) and up-
chirping (usually in a 
stretcher)

For further details, see A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)



 

“Recovering  the original pulse duration in CPA laser chains:”
Acousto-Optic Programmable Dispersive Filter 

Each optical element in a CPA chain introduces a spectral phase 
modification. Recovering the original pulse duration means (ideally) 
removing all the “new” terms in the spectral phase to recover a FTL 
pulse Acousto-optic filter (DAZZLER):

Pulse shaping is achieved via interaction of co-propagating 
acoustic and optical waves in a photoelastic medium
Acoustic wave produced by a (programmable) RF generator



A look at the DAZZLER in the ILIL 200TW laser



Measuring a pulse duration: Intro to autocorrelation methods

Basic ingredients common to ALL the pulse measurement methods

1. Time-space transformation. A given delay is obtained by letting the pulse to be delayed travel longer 
paths; fs delays require (variable) micron-scale optical path lengths, which can be safely produced and 
measured using current technology translation stages and optical encoders
2. Use of the (auto)correlation functions to retrieve the pulse behaviour

Given two fields Eref(t) and E(t), the measurement of their 1st order correlation function 

allows E(t) to be recovered provided that Eref(t) (reference pulse) is fully known.

If a reference pulse is not available, more advanced methods must be employed

In what follows (and in the Martina’s talk), detectors with response times much longer than the 
pulse duration are considered, so that basically they measure the pulse energy:

The duration of a pulse with a ~100fs duration cannot be measured using “electronic” methods (for instance, PD, streak-cameras, …). 
One has to resort to optical methods, working either in the time domain or in the frequency domain or combination of the two



Characterization of the temporal behaviour of a laser pulse using a reference pulse 

see Ch. Dorrer, M. Joffre, C.R. Acad. Sci. Paris 2, 1415 (2001)

Time-domain interferometry

Notice that the last two terms correspond to the 1st order correlation function.
Taking the Fourier Transform, one gets

from which the spectral phase of the pulse can be retrieved provided that the 
reference pulse is completely characterized

A scan of a sufficiently large delay (>pulse duration) is carried out, and the signal 
corresponding to each delay is recorded

Recall that the spectral amplitude is simply related to the spectrum



Characterization of the temporal behaviour of a laser pulse using a reference pulse (2)
Frequency-domain interferometry

Interference fringes appear in the power spectrum with an average fringe spacing inversely 
proportional to the time delay

The phase of the fringe pattern yields the spectral phase difference between the reference and 
the unknown pulse

The delay is kept at a fixed value, and the spectrum of the overlapped 
pulses is measured

Main issue with these correlation techniques: a completely characterized reference pulse (with a 
spectrum larger than the one of the pulse to be measured) is ususally not available!



Let’s look at what happens when we have an interferometric auto-
correlator: that is the pulse to be measured is splitted into two arms 
and recombined after being relatively time-delayed

Characterization of the temporal behaviour of a laser pulse w/o a reference pulse:
1st order autocorrelation 

The terms in parenthesis correspond to the 1st order auto-correlation function.

Wiener-Khinchin theorem*

Thus, taking the FT of the signal (with respect to the time delay between the two pulses), one ultimately only gets 
the power spectrum (Fourier-transform spectroscopy): no infos on the spectral phase

In fact, it can be shown that the full knowledge of E(t) requires the measurement of all the successive Gn(t)



Characterization of the temporal behaviour of a laser pulse w/o a reference pulse 
1st order autocorrelation

Using only a Michelson interferometer: the width of S(t) 
is related to the coherence length of the pulse. 
No way to recover the phase: 1st order autocorrelation 
is the IFT of the spectrum

The trace is symmetric, even in the presence of a chirp

With some assumption on both the pulse shape and 
phase (basically, no or negligible chirp), one can recover 
the pulse duration

Very basic method → more advanced methods in Martina’s talk

Recalling that

Unchirped pulse

Chirped pulse

Quite difficult to interpret, w/o any hint 
on the pulse chirp, spectrum, ...





Focusing an ultrashort, high power laser pulse: Why using reflective optics
Ultrashort and high power laser pulse through a transparent medium (a lens):
1. Dispersive (linear) effects. As we have seen, an initial unchirped pulse (FTL) acquires high order terms in the 
spectral phase, leading to the pulse getting chirped (and thus stretched in time)
2. Nonlinear effects

A numerical example: a lens made up by a BK7 glass

Initial pulse After 5mm propagation After 10mm propagation



Focusing an ultrashort, high power laser pulse: Why using reflective optics

Ultrashort and high power laser pulse through a transparent medium (a lens):
1. Dispersive (linear) effects. As we have seen, an initial unchirped pulse (FTL) acquires high order terms in the 
spectral phase, leading to the pulse getting chirped (and thus stretched in time)
2. Nonlinear effects

Gaussian pulse propagating in a medium with a 3rd order nonlinearity

The 1st term accounts for the usual phase shift after a propagation over a length L.
The 2nd term leads to another contribution to the phase shift:

According to what we said earlier, the instantaneous frequency acquires a time-dependent term:



Need for the usage of reflective focusing optics
Can we use a mirror of any shape?

An example: spherical mirror with focal length 1m, beam with size 10cm, impinging on the 
mirror with a 1deg angle

Pure geometrical optics, time of arrival (in fs) at the 
focal point of each ray

Parabolic mirrors are the only allowed surfaces to 
keep the original pulse duration!

Focusing an ultrashort, high power laser pulse: Why using parabolic mirrors 





Wavefront aberrations. Intro: A thin lens as a phase object

Thin lens: a ray exits with no transverse shift

Phase delay experienced by a small beamlet crossing the lens 
at (x,y)

The passage through the lens can thus be represented as a 
simple phase transformation, through the factor

In other words, the (complex) field across a plane immediately behind (downstream of) the lens is related to 
that on a plane immediately before the lens by

Thus, if a plane wave(front) is incident on the lens, the complex field just behind the lens can be written 
(neglecting constant phase terms) as



The lens thickness at a given point (x,y) can be calculated by decomposing 
the lens into 3 layers (convex-plane, plane-plane, plane-convex)

Paraxial approximation Replacing this into the total phase shift (and defining the 
focal length in the well-known way), one arrives at

It can be easily demonstrated that this represents the wavefront of a spherical 
wave with “focus” at a distance f. The focusing can be thus seen as a pure phase 
transformation.
What does it happen when a non-planar wavefront is impinging on the lens?

On working out the calculations, one gets



Ultrashort and ultraintense laser systems typically feature a large number of elements, whose optical performances can be greatly 
affected by material non-uniformity, manufacturing imperfections, material stresses, thermally induced deformations, …
All these factors can introduce wavefront aberrations, which in turn affect the energy distribution in the focal plane
 
Furthermore, aberrations introduced by the focusing device (most often an Off-Aaxis Parabolic mirror) can be measured and possibly 
corrected using active (deformable) mirrors

Focusing an ultrashort, high energy beam down to ultrahigh intensity: Wavefront 
aberration issues



Wavefront (transverse phase) aberrations: Effects in the focal spot plane



Most of the time the deviation of the wavefront from a plane 
is described in terms of Zernike polynomials, which forms a 
complete set of polynomials onto the unit circle: 

with

Strehl ratio: gives the maximum intensity achievable with an 
aberrated beam normalized to the one from an unaberrated 
one (see Born&Wolf for a deeper discussion)

The Strehl ratio is related to the mean square 
deformation of the wavefront:

Wavefront (transverse phase) aberrations: characterization and figure(s) of merit



For the characterization of (ultra)short laser pulses, two types of WFS are most often employed

Shack-Hartmann WFS
Measures the displacements (with respect to an 
unaberrated beam) of the spot of different beamlets 
focused by an array of lenses

For other WF measurement techniqes see H. Wang et al., High Power Laser Sci. Tech. 2, e25 (2014)

Wavefront (transverse phase) aberrations: Characterization techniques



For a complete discussion of the analysis of SH WFS see B. Schafer et al, Rev. Sci. Instrum. 77, 053103 (2006)

The spot deviation is related to the slope of the deformed 
wavefront

The displacements of the spot centroids with respect to a 
plane wave reference position is a measure of the local 
Poyinting vector and thus the local gradient of the wavefront

These data can be used to reconstruct the wavefront, starting from a polynomial expansion (for instance, a Zernike 
expansion)

Data from SH WFS can also be used to calculate “standard” beam parameters, such as the M2 parameter:

which depends on 2nd order moments of the so-called Wigner distribution:

Wavefront (transverse phase) aberrations: The Shack-Hartmann WFS



Correction of WF aberrations using deformable mirrors



Raw image from SH detector

Retrieved local displacement from local 
reference centroid



Retrieved wavefront

Vertical Astigmatism





Wavefront distortions can also be introduced by incorrect 
Off-Axis Parabola (focusing optics) alignment

Even for very small angles of misalignment, this results in 
focal spot broadening and thus both maximum intensity 
and Strehl ratio degradation

L. Labate  et al., Appl. Opt. 55, 6506 (2016)

Wavefront aberrations introduced by incorrect OAP alignment

→ see Gabriele’s talk



Wavefront sensing and active correction with deformable 
mirrors can also be used to compensate for OAP 
misalignments

Wavefront aberrations introduced by incorrect OAP alignment (2)



Phase retrieval from intensity measurements

The above measurement techniques all required a “direct” 
characterization of the wavefront. 
In 1972 Gerchberg and Saxton proposed a technique 
(actually already in use in other fields) to retrieve the phase 
from pure intensity measurements.

Let us consider 2 images of the beam, taken at 2 positions. 
By theoretical arguments, we know how the fields at the 2 
positions are related to each other. For instance, in the 
paraxial approximation, I have a Kirchoff integral:

This equation provides me with a propagation operator, P (and its inverse P-1)



Phase retrieval from intensity measurements

I can thus retrieve the phase (wavefront) by pure intensity 
measurements using the following algorithm:

The algorithm can either be stopped after a given number of iterations, or when a 
condition, encompassing a metric, is met. For instance, one can calculate the following 
quantity at each iteration
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