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Motivations (1): Laser-driven particle acceleration at ILIL

Ultrashort/ultraintense laser interaction with matter
can be fruitfully employed to accelerate charged particles to
high energy

The underlying processes are different for electrons and
protons/light ions

Compact, “table-top” accelerators (thanks to the huge
accelerator gradients)

Proton (and light ion) beams can be accelerated up to
~10MeV /nucleon via the so-called TNSA process (and
others)
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Motivations (2): Laser WakeField Acceleration (of electrons)

Electrons can be accelerated up to relativistic energy
(several 100s MeV up to ~10GeV) via the so-called Laser
WakeField Acceleration (LWFA) process

A “historical” taste of the literature on LWFA

1979: proposal by Tajima&Dawson

The dawn of o rnpact part

o

e acceleratons

2004: “high quality” beams reported
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2006: GeV energy level achieved

LETTERS
GeV electron beams from a
centimetre-scale accelerator

nature ph:,'sn:s | VD].. 2 |DC'IHEER lﬂﬂﬁ |www nature. mmjnatu.reph}mcs

Nowadays: routine production of stable e- bunches,
Secondary X/gamma-ray sources, energy increase
up to the ~10GeV level
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PRL 101, 105002 (2008) PHYSICAL REVIEW LETTERS s SEPTEMBER: 208

Intense y-Ray Source in the Giant-Dipole-Resonance Range Driven by 1O-TW Laser Pulses
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Motivations (3). Very High Energy Electrons (VHEE) for radiotherapy

Electrons with energy in the range ~100-250 MeV (so- Multi-field irradiation

called Very High Energy Electrons) are particularly a. - 33
promising for novel protocols/modalities in radiotherapy “;% ;

Recent experiments aimed at demonstrating the feasibility
of advanced irradiation modalities (similar to current
photon based radiotherapy) with laser-driven VHEE pencil
beams

" Dose(ay)

Intensity modulation

e-beam
collimator
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L. Labate et al., Sci. Rep. 10, 17307 (2020)



A 100TW class ultrashort laser system: The ILIL laser
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Main laser system (until may 2025):
TiSa CPA, ~25fs, >5J energy (~220TW peak power), 1Hz rep rate

0.6 rnJ 10 Hz

591-27fs| 220TW

30 mJ 10 Hz 1 2.5 Hz
INTERACTION 65“ m/ 700 ml
CHAMBER 10 -
1 L,| >20) 1 -2.5 Hz
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Bandwidth of a typical ultrashort laser

Uncertainty relation (between the w-t
conjugated variables):

1
ot dw > —
2

Expressing it in terms of a wavelength bandwidth:

2
sa> 1AL
2 27me ot

For a Fourier-transform limited pulse (we'll see what
this does mean later)
A% 1

(3/\ ! -
¢ ot

@ CNRIND (i)
< LS

o 2me
\.U—T
Ow 2me

Putting some numbers in, we find that ~30fs laser
pulses require (at least) a ~30nm bandwidth
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Index of refraction
Absorption cross section
Fluorescence lifetime
Fluorescence bandwidth
(FWHM)

Peak emission wavelength
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Ultrashort laser oscillator: KLM e

Intensity
A quick recap on mode-locking — Longitudinal modes
| — Gain curve

Laser oscillator: optical cavity + active medium (providing amplification when

— Allowed modes

the population inversion is established by a pumping process) —  |___AL 4.
Optical cavity: longitudinal modes with regularly spaced frequencies: [ Freqvney
c c 1 ) )
v =k — Sv = o e e
(QL) FERHTRT T T “Locked” phases

The resulting electric field at a given point (for instance, at the
output mirror) can be written as

N-1 iy
E(t)="Y  Eysin[27(vo+ndv)t+ ¢, (0)] o
n=0 @
When the relative phase is equal to zero: 0 ‘
1. Maxima of the resulting “pulse” repeat in time with a period Random phases
a) [E (0
5t = 2T | I I .
C dw
2. The higher number of “modes” we consider, the shorter the resulting -
maxima .
What does it happen when I consider a non-null (random) phase? ; o= ’ L o
' ' /T
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Constant or linear dependence of the phase on the frequency Piery i

v

Pw;) = (1 — 1)5

i

i

N=1
. Laser er
cutputp;‘(‘;] N:;
: Pycas
f N=4
ﬂIBT—;:;r
5
It can be easily shown that, for ¢, =na [ \
PaN PaPaN ~ .
. N-1 sin(Nmrévt) Time 1
E(t)= Egsin | 2| vp+ ——6v |t | ——— P N=6
2 sin{mdvr)
1. Power emitted as a pulse train, with a time separation between the pulses
corresponding to the cavity round-trip
2. The peak power grows as the square of the number of modes A
3. The FWHM of each pulse decreases linearly with the number of modes
From a practical viewpoint, achieving a mode-locking is accomplished by P
inducing a periodic modulation of the gain of the cavity o=
e r
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KLLM ill f high 1
oscillators or high power lasers Optical Kerr effect

A physical process is used, able to modulate losses in the n=no+nzl
cavity, WhI.Ch d.epends cy>n|y on the instantaneous intensity of s it leads to a (se|f) .
the laser (i.e., it doesn't depend on any external source) . : 1
focusing of a beam with a
Gain i Mode transversely non-constant e
medium b locker intensity
Ti:sapphire Rod n

..C_ Output —
_| beam - C } \

The “aperture” (iris) is not needed: overlapping between

Transmission (T)

1
- signal and pump acts to modulate the gain
Yy . .
— " Optical scheme of a KLM oscillator
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Amplifying ultrashort pulse: The Chirped Pulse Amplification (CPA) technique

:

Short pulse

Grating pair:
Pulse stretcher

~1nJ, ~10-100 fs, ~100MHz
-

Amplifier  ~1nJ, ~1-100 ps, ~100MHz

S — =~

—

J

Amplified

Stretched pulse
stretched pulse
v
-4 >
Amplified
: short pulse
Grating pair:
\ ‘ P Pulse compressor ~1-10J, ~10-100 fS, ~10Hz

~1-10J, ~10-100 ps, ~10Hz
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A grating stretcher (or compressor): How it works

Diffraction grating(s) with pitch d For each grating
\‘: B d(sinvy + sinf) = A

t=L/c=(AB+ BC)/e

Thus, the optical path “spent” in the system depends
upon the wavelength. At the exit, | have a longer and
chirped pulse
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Amplifying (ultra)short pulses: Amplification stages

“Regenerative” amplifier

[~

|-| — POL2

PC2
I|\Jfﬂ }OUT

TiSa, Brewster angle cut Ti:sapphire crystal
M1-M4, high reflectance mirrors at 800 nm
PC1, injection Pockels Cell

PC2, extraction Pockels Cell

POL 1, POL 2, Polarizers

FL., Focusing lens
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“Multi-pass” amplifier

Input beam

Steering mirror

— Ti:Sapphire
Pump beam crystals ‘
Steering '
mirror

Ouput beam
Pump recycling
mirror Steering mirror

Steering Pump
mirror recycling mirror



Toward the characterization of the pulse: time (longitudinal) description of an ultrashort pulse

At a fixed point in space, for a linearly polarized pulse, the electric field can be simply written as E(t) = A(t) cos(®o + wot)

4 R
The field envelope and the pulse intensity are

related by the expression (A in V/m, [in W/cm2)

| 2
A(t) = EU—C\/1(:)=27.4\/1(:)

(I)U Absolute phase, Cosine pulse P
or carrier envelope phase (CEP) Sine pulse ———

Adding a time dependent phase function results in a so-called
chirped pulse
(1) = Dy + wot + P,(1)

An instantenous frequency can be defined as = 4
do(1) dd, (1) Upchirped pulse ™ —g—5—5=—5—
olt) = =wo+ — Downchirped pulse t (fs)
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Introducing the spectral amplitude and phase

Using Fourier analysis, the field and its Fourier transform can be written as
o0 oo

1 = - - ;
E(f):E f E(w)e* dw E(w) = f E(t)e ™ dt

—00 —50

Of course, the knowledge of one of the two description is enough to completely characterize the pulse.

Most often, the so called “analytic signal” is used.

Being E(t) real, its Fourier transform is a Hermitian function: E(w) = E*(—o)

This means that the knowledge of the Fourier transform for positive frequencies is enough to fully retrieve the signal

We can thus define, for convenience, a new function in the frequency domain, retaining only the positive part of the FT:

Ef(w)=E(w) forw=0

0 forw<0
and the corresponding FT!

(e @]
1 - )
E+(:)=E f Et(w)e dw
—0o0

According to the above observation, E*(t), which is called analytic signal, is enough to retrieve the “real” field E(t)

[ CNRINO {».}; Y
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Introducing the spectral amplitude and phase (2)

In the spectral domain we can introduce a spectral amplitude and a spectral phase as

BHw) = | B (w)|e~#®) me-w(w)
What do the spectral amplitude and phase mean?

Spectral amplitude: proportional to the square root of /(w), the usual “spectrum” as measured by a spectrometer

The spectral phase is basically the (relative) phase of each frequency in the waveform
What is the effect in the time domain? 1 F '
E@t)= o f E(w)e dw
/g

—00

P(w;) =0

f\\ /\

Wy
2]
@g
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Time vs frequency space (behaviour)

Time domain
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Frequency

Bt (w) = |EX(w)|e=®@ « /I(w)e~#«)

LE ()l
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Spectral phase: Taylor expansion and the role of the different “orders”

In general, the spectral phase can be expanded into a Taylor series:

0 () , _ :
H(w) = Z ¢ Jﬁm) (w—wp)’ where, of course, ¢\ (wpy) = %
=0

awp
This holds for a well-defined pulse. Basically, it means that each term in the expansion produces a pulse broadening or

distortion that is significantlv smaller than that of the previous term (see * for a deeper discussion on the optical
meaning) @ (w—wp) > l_{'ﬂqu (w—wp)? > l_{'ﬁng (w—wp)® >
Ow . 0 21 P " 0 31 D2 » 0 e

0

Terminology: 2nd order term — Group Velocity Dispersion (GVD), 3rd order term — Third Order Dispersion (TOD)

Why introducing the spectral amplitude and phase?

A linear optical system acts on an input field by a multiplication by a (complex) transfer function in the frequency
domain:

Equ(@) = M@)E} () = Rw)e M Ej (@) E,\(®)
The spectral phase of the output pulse is thus modified —' M(w) = R(w)e ™
according to _

Pin(w) = din(w) + da(w)

An initially unchirped pulse (f?:;,,(wo) = 0) can acquire a chirp if dy(wo) #0

E DuI( )

@CNAING @)

S—

*see D.N. Fittinghoff et al., IEEE J. Sel. Top. Quant. Electr. 4, 430 (1998) UJ -PHOQS



Spectral phase: the meaning of the first orders (exercise)

+oo
Spectral phase expansion pw)=>" Jio(”( wo)(w — wp)?
J=0 1 oo .I
“Reference” pulse with ¢(w) =0, so that E—,-E’f ’E,éf ‘ and E,ef( f =2 2—/ |E,«€f(w)|o"“"t dw
T J—00
5(w) = (o)
E-!-(w) — lE+(w)| o~ i9(wo) — |Ert,f | o~ i¢(wo)

On calculating the IFT, one gets

E*(t) = o

oo, . Y ; i
2 / |E* (w)| e 06t duy = 40 B ()

This corresponds to acquiring an absolute phase &(wy)

P(w) = ¢'(wo)(w — wp)| Pulse with a 1st order term

E+(w) = |E!{:,f(LU)| C_iﬁb'(wﬂ)(w—wn}
On calculating the IFT, one gets

E*(t) / | i w)‘ e~ (wWo)(w-wo)givt ) — i (wWolwo B0+ (3 — ' (1))
This corresponds to a time shift of the pulse, with
Ty = ¢ (wo)

To summarize: constant and linear terms in the spectral phase have no effects

@U PINO AL, on the pulse duration

%, -PHOOS



Spectral phase: High order terms and pulse duration

For a pulse with a given bandwidth (and spectrum), the shortest duration is reached when no chirp occurs; in the
frequency domain, this translates into the spectral phase exhibiting a constant or linear dependence upon

We start calculating the pulse duration for a general pulse as . ; B PET R
F(t— ()E(t)] = -?Jc_'w(‘}a(— (6“0 E(w))
+o00 +o00 5 W
= [ RO OEES [ = @EOF a (easy to demonstrate)
Using the Plancherel’s identitv and the eauation aside

2
dw

-/ :O F It - BN dw = [ j %(Qw B(w))

and finally, on introducing the spectral amplitude and phase and calculating the derivative

ol a 2 o ol z 2
M:/; a%|E(w)| dw+f_; Bw)| ai (w (1) — p(w))

The first integral is ever positive and depends upon the spectral amplitude (or, the spectrum). As for the second one:
_ _ )
; (w(t) — o(w)) = (t) — &' (wy) — é(spectml phase terms O((w — wy)?))
w W

We saw above that the second term accounts, in the time domain, for a pulse delay, Tg = qﬁ’(wg)so that the first two
terms cancels out

dw

Thus, a further (positive) contribution to the time duration exists if the spectral phase exhibits higher order terms (GVD, TOD, ...

A pulse whose spectral phase only contains up to linear terms in w is called Fourier-transform limited: in the real domain, it features
the smalles pulse duration compatible with the spectral width
\CNRINO (i) ", [PHOOS



Spectral phase modifications and time duration: a few examples

a) @.(¢) (rad) w(f) (rad/fs) ¢ (w) (rad) Ty(w) (fs) Unchirped (bandwidth limited) pulse, constant
A 4 4 4200  spectral phase
10 26 10
100
p J RN | 9 S S W—
L I SO S W £ o
22 10
0 - R J-100
40 2 24 2.8
t (fs) w (rad/fs)
b) &.(1) (rad) w(7) (rad/fs) ¢ (w) (rad) Ty(w) (fs) Unchirped pulse (bandwidth limited), shifted in
¢ 1 i 1200 time due to a linear (negative) spectral phase
26 10}
L ' 100
24 0
> 0
33 0 =&
0 3 J-100
40 2 24 2.8
t (fs) w (rad/fs)
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Spectral phase modifications and time duration: a few examples (2)

) @.(f) (rad)

'y

w (1) (rad/fs)

f

2.6

10
2.4

5
2.2

0

t (fs)

d) @.(¢) (rad) w (1) (rad/fs)
2.6

10

24

¢ (w) (rad) (w) (fs)
$ 1200
10
100
0
0
—10
—100
2 24 2.8
w (rad/fs)
¢ (w) (rad) (w) (fs)
) JIZOO
10
100
0
0
~10] .
4 »—100
2 2.4 2.8
w (rad/fs)

Symmetrically broadened pulse, due to a 2nd
order term in the spectral phase

3rd order spectral phase term, leading to
quadratic group delay. In the time domain,
oscillations appear before or after the main
pulse, depending on the sign of the 3rd order
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Spectral phase modification by common elements

Recall that
E} (0) = M(0)E(0) = R(w)e P EL ()

Transparent media

bn(@) = k(@)L = ~n(w)L

d L dn L dn . : : ) .
Adfm = n+o—)==Z(n—r— If dn/dA is not equal to zero (dispersion), each frequency will move with
dw c dw c . . .
5 5 a different velocity and the pulse gets broadened (spectral phase wise,
y d“¢m L dn d<n _ _
Oy = > =—\2—+to— this results in a 2nd order not null)
dw c\ do dw
3' = “3 - - - - -
Makcd | dom) | ?(&-104 :(“ar“;’ .,(—,: ) ? ) ‘E‘::’) E";’) For ordinary transparent media in the visible
1 1 1 s
o i = o e e . . .
BK7 400 15308 37 1066 T2 sm 120.79 40.57 region, normal dlsper5|on is encountered
500 1.5214 658 392 ~346 5185 86.87 3234
600 1.5163 -3.91 1.77 -129 5136 67.52 29.70 1 1 1+ 1
I e N (dn/dA>0), which results in positive chirp
1000 1.5075 —1.40 0.15 —0.09 5075 26.93 42,88 | I h . f h h
SF10 400 1.7783 —-52.02 59.44 —101.56 6626 673.68 548.50
500 17432 —2089 1555 —1681 | 6163 34419 21981
600 17267 —11.00 6.12 —498 5080 23391 140.82 ultraviolet infrared
200 1.7112 —4.55 1.58 —0.91 5830 143.38 97.26 absorptions absorptions
1000 1.7038 —2.62 0.56 —-0.27 5771 99.42 92.79 n A A
1200 1.6992 —1.88 0.22 —0.10 5743 68.59 107.51 T
Sapphire 400 1.7866 —17.20 13.55 —15.05 6189 153.62 47.03 & ’:'
500 1.7743 -8.72 5.10 —442 6064 112,98 39.98 x / \
600 1.7676 =5.23 232 —1.68 6001 88.65 37.97 'l, ‘I.r‘I
800 1.7602 —2.68 0.64 —0.38 5943 58.00 42.19 1.0 o ; o+
1000 1.7557 —-1.92 0.20 —0.12 5921 3533 57.22 __-H\"’ \"
1200 1.7522 —1.70 0.04 —0.05 5913 13.40 87.30 | | - s @
-~ - |e——— X
- ~ vacuum visible far-infrared i '/
‘ﬁi! CN ;ﬂNO (k) ultraviolet Li‘
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Modifying the spectral phase: stretcher/compressor and Spatial Light Modulators

The usage of grating
elements to stretch or
compress a pulse introduces
2nd order (and higher!)
terms in the spectral phase,
with both down (usually in
a compressor) and up-
chirping (usually in a
stretcher)

a) !Red [
Ll
_ A
‘ |
I f L 2f e
b) Red 1'
a<( ) (
Blue
I f i 2f Il al
0 Red
a>0 1
I Blue
i 2f

h
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“Recovering” the original pulse duration in CPA laser chains:

Acousto-Optic Programmable Dispersive Filter

Each optical element in a CPA chain introduces a spectral phase
modification. Recovering the original pulse duration means (ideally)
removing all the “new” terms in the spectral phase to recover a FTL

pulse

Amplitude and phase control of ultrashort pulses
by use of an acousto-optic programmable
dispersive filter: pulse compression and shaping

F. Verluise and V. Laude

Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, F-81404 Orsay Cedex, France, and
Laboratoire pour I'Utilisation des Lasers [ Eeole Polytechnique, 91128 Palai Cedex, France

Z. Cheng and Ch. Spielmann

Photonies Institute, Vienna University of Technology, Gusshausstrasse 27-29/387, A-1040 Vienna, Austria

P. Tournois

Fastlite, Xtec, Ecole Polytechnique, 91128 Palaiseau Cedex, France

April 15, 2000 / Vol. 25, No. 8 / OPTICS LETTERS 575

>
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-
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acoustic P '
wave '
r
transducer "1 j
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| [ 5 17,

Acousto-optic filter (DAZZLER):

Pulse shaping is achieved via interaction of co-propagating
acoustic and optical waves in a photoelastic medium
Acoustic wave produced by a (programmable) RF generator

Femtosecond —» Stretcher | AOPDF > Amplifier —3»{ Compressor —
oscillator
Output
a)
—_—
‘»wm‘”” Pulse shaper
-
b) Objective Calculated modified
\ Nﬁclds
Computer
learning Pulse shaper
algorithm.
Real
electric fields
Feedback
signal
E:q?ﬁitnent_‘_
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Alook at the DAZZLER in the ILIL 200TW laser
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Measuring a pulse duration: Intro to autocorrelation methods

The duration of a pulse with a ~100fs duration cannot be measured using “electronic” methods (for instance, PD, streak-cameras, ...).

One has to resort to optical methods, working either in the time domain or in the frequency domain or combination of the two
Basic ingredients common to ALL the pulse measurement methods

1. Time-space transformation. A given delay is obtained by letting the pulse to be delayed travel longer
paths; fs delays require (variable) micron-scale optical path lengths, which can be safely produced and

measured using current technology translation stages and optical encoders
2. Use of the (auto)correlation functions to retrieve the pulse behaviour

Given two fields Eref(t) and E(t), the measurement of their 1st order correlation function

Clri= /: L, (0)E(t - 7)dt

allows E(t) to be recovered provided that E_(t) (reference pulse) is fully known.

If a reference pulse is not available, more advanced methods must be employed

In what follows (and in the Martina’s talk), detectors with response times much longer than the

pulse duration are considered, so that basically they measure the pulse energy:

+oo ; +oo
Read signal oc/ |E(t)|* dt / ~ I(t) dt o pulse energy

CNRINO (i)
N
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Characterization of the temporal behaviour of a laser pulse using a reference pulse

Time-domain interferometry

variable T t Eyt-7

E(t N -
@ ) Integrating

detector

S(7)

A scan of a sufficiently large delay (>pulse duration) is carried out, and the signal

corresponding to each delay is recorded

+oo
S(r) o< [ Bt — 1)+ EQ)P dt
. _icoo +o0
_ / | Bes(t — 7)[2 dt + [ 2 4t + (/ B()EL(t — ) dt + c.c.)
Notice that the last two terms correspond to the 1st order correlation function.

Taking the Fourier Transform, one gets
F(S)(w) = Ab(w) + E(w)E;,j(w) + E(~w)Eyes(~w)

from which the spectral phase of the pulse can be retrieved provided that the

reference pulse is completely characterized

Recall that the spectral amplitude is simply related to the spectrum

B () = |B* (@)l

4 i see Ch. Dorrer, M. Joffre, C.R. Acad. Sci. Paris 2, 1415 (2001)
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Characterization of the temporal behaviour of a laser pulse using a reference pulse (2)

Frequency-domain interferometry

ﬁ){ed"ﬂ Eu(t_r,} .
The delay is kept at a fixed value, and the spectrum of the overlapped

E(n) N Spectrometer pulses is measured
S(w)
S(w) o |F(Eres(t—7) + E@) = |Eres(w)e™ + E(w )}

— ‘E-‘.,.f_,f(w}‘g + ‘E(w}‘ + (‘E.,.,_,f(w},é‘*{w]‘ e ores(w)—elw))glwr | (:,(:.)
= By (@) +|E@)| +2|Brep(@)||E* ()] cos [ — (8)res(w) — 6(w))]

Interference fringes appear in the power spectrum with an average fringe spacing inversely

proportional to the time delay

The phase of the fringe pattern yields the spectral phase difference between the reference and

the unknown pulse

Main issue with these correlation techniques: a completely characterized reference pulse (with a

spectrum larger than the one of the pulse to be measured) is ususally not available!

OJ -PHOQS



Characterization of the temporal behaviour of a laser pulse w/o a reference pulse:
1st order autocorrelation

Let's look at what happens when we have an interferometric auto- ( )
correlator: that is the pulse to be measured is splitted into two arms i
and recombined after being relatively time-delayed

signal

> <

+oo0 i
S(r) / Bt —7) + E(t)? dt .
o (t-t

+o0 9 400 9 +oo )
- [ C|E(t - ) dt+/ T |E@)) dt+(/ E(t)E'(t—’r)dtJrc.c.) &
Detector \

= 9 /er \E(t)|2 + (/H E@)E*(t—T7)dt + c.c:.)

o — 0 o —O0

The terms in parenthesis correspond to the 1st order auto-correlation function.
Wiener-Khinchin theorem* TRk

FIGi(7)] = |E(w)|
Thus, taking the FT of the signal (with respect to the time delay between the two pulses), one ultimately only gets

the power spectrum (Fourier-transform spectroscopy): no infos on the spectral phase

In fact, it can be shown that the full knowledge of E(t) requires the measurement of all the successive G (t)

F\CNRINO (i) R, LEHOS



Characterization of the temporal behaviour of a laser pulse w/o a reference pulse
1st order autocorrelation

Recalling that E(t) = A(t)eid?ociwgte'@a(t)

Bl e 2/+'x'|E(t)|'2+([_+°OE(t)E*(t—T)dt+c.c.)

o0
— — T)COS |woT Jt—T
2 E t)| > dt+ 2 t)A(t + O, (t) — D, (t dt
. X 1 + Gl
Unchirped pulse (7)
3. (@ £ 1001(0) The trace is symmetric, even in the presence of a chirp
S ™ T 50
g 0 \IVV\“ g o Using only a Michelson interferometer: the width of S(t)
o m S50
g = is related to the coherence length of the pulse.
2
2 i [fs] Ll 'sozew; T [fsfm " No way to recover the phase: 1st order autocorrelation
z [® g 100f (d) is the IFT of the spectrum
& e 2 50
= =]
% k % 0 Quite difficult to interpret, w/o any hint
™ 0.5 -50
£ 2 00 on the pulse chirp, spectrum, ...
0 500 1000 -1000 -500 0 500 1000
time t [fs] delay 1 [fs] . .
Chirped pulse With some assumption on both the pulse shape and

phase (basically, no or negligible chirp), one can recover

~ the pulse duration _ . o
,INO ( AL Very basic method — more advanced methods in Martina's talk
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Focusing an ultrashort, high power laser pulse: Why using reflective optics

Ultrashort and high power laser pulse through a transparent medium (a lens):
1. Dispersive (linear) effects. As we have seen, an initial unchirped pulse (FTL) acquires high order terms in the
spectral phase, leading to the pulse getting chirped (and thus stretched in time)

2—Neonlinear—effects
A numerical example: a lens made up by a BK7 glass

Initial pulse After 5mm propagation After 10mm propagation

%1073 _sk107™ 5x107% 1107 5.x107 141, 10713 5x 10713

5510 41, w107 13 5510713

1.x10713

@CNRING @)



Focusing an ultrashort, high power laser pulse: Why using reflective optics

Ultrashort and high power laser pulse through a transparent medium (a lens):

I.- a e aftfa Acwe - havae coan Sn 1n nchiraed—p
EHSP v 3 - w 2V ——3a o b-ea—pPH

2. Nonlinear effects

I(£)
Gaussian pulse propagating in a medium with a 3rd order nonlinearity /\

nity=np+n2lin

- ¥

The 1st term accounts for the usual phase shift after a propagation over a length L.
The 2nd term leads to another contribution to the phase shift: sw(t) /\

L) = —nal(theapl/c .
N
According to what we said earlier, the instantaneous frequency acquires a time-dependent term:
(1) = w0 + S (1) Seo (1) = b (1)
w = ) o ) = —iTnr
: 1 — ;

\CNRINO (i) N, LPHOOS



Focusing an ultrashort, high power laser pulse: Why using parabolic mirrors
Need for the usage of reflective focusing optics

Can we use a mirror of any shape?

An example: spherical mirror with focal length 1m, beam with size 10cm, impinging on the

mirror with a 1deg angle

3400 10° F

3399 10° F

3.404 10° |
3403 10°
3402 10°

3.401 % 10° |

—-40

—20 0

Pure geometrical optics, time of arrival (in fs) at the

focal point of each ray

@\CNRIND (i)

20

40

Parabolic mirrors are the only allowed surfaces to

keep the original pulse duration!
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Wavefront aberrations. Intro: A zhinlens as a phase object

Thin lens: a ray exits with no transverse shift

Phase delay experienced by a small beamlet crossing the lens
at (x,y)
oz, y) = knAlz,y) + ko [Ao — Az, y)]

The passage through the lens can thus be represented as a
simple phase transformation, through the factor

t; (z,y) = exp [ikAg) exp [ik (n — 1) A (z, )]

In other words, the (complex) field across a plane immediately behind (downstream of) the lens is related to
that on a plane immediately before the lens by

U'(z,y) =t (x,y) Ui (z,y)
Thus, if a plane wave(front) is incident on the lens, the complex field just behind the lens can be written
neglecting constant phase terms) as
(neglecting P 125 a,y) = explik(n — 1) A (2,)

@\CNRINO PG -£H00s
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The lens thickness at a given point (x,y) can be calculated by decomposing
the lens into 3 layers (convex-plane, plane-plane, plane-convex)

Ry —\/R} ;z_-z‘--,'—.
R A(z,y) = A (z,9) + Ay (,9) + Ay (2,y)

On Wofking out the calculations, one gets

_ ) _ |'|_ a2 + 2 _ n'll 12 + g2

Agy Ay = Ap + Agp + Ag
Paraxial approximation z” - ;ﬂf < R Replacing this into the total phase shift (and defining the
2 g e ; focal length in the well-known way), one arrives at
QI:'}' i) T ( 1 1 ) ;
A 2 Ry R U'(z,y) = exp [ i r)f{.-;-? by ;]

1 . 1 1
e A
f (=1 (Rl Rz)

It can be easily demonstrated that this represents the wavefront of a spherical
wave with “focus” at a distance f. The focusing can be thus seen as a pure phase

transformation.
What does it happen when a non-planar wavefront is impinging on the lens?

CNRINO (i)
N
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Focusing an ultrashort, high energy beam down to ultrahigh intensity: Wavefront
aberration issues
Ultrashort and ultraintense laser systems typically feature a large number of elements, whose optical performances can be greatly

affected by material non-uniformity, manufacturing imperfections, material stresses, thermally induced deformations, ..
All these factors can introduce wavefront aberrations, which in turn affect the energy distribution in the focal plane

Furthermore, aberrations introduced by the focusing device (most often an Off-Aaxis Parabolic mirror) can be measured and possibly
corrected using active (deformable) mirrors

High power

target

beam

Wave front sensing

) (s T T e e e T ) Y i i i

ho correction
CNRINu (48 %, [PHOOS



Wavefront (transverse phase) aberrations: Effects in the focal spot plane

Astigmatism: Magnitude [0/1], angle 0, 457, 90

@@[3]

Coma: Magnitude [0/+1] 1, angle 0%, 45°, 90°

CICI0)°

Spherical aberration [-1/+1]

@@
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Wavefront (transverse phase) aberrations: characterization and figure(s) of merit

Most of the time the deviation of the wavefront from a plane
is described in terms of Zernike polynomials, which forms a
complete set of polynomials onto the unit circle:

W e O(r,0) =Apo + T ZAHDR (p)+ Z Z AnmR (P} cos(mft/)

aberration
n=2 n=1m=1

>z _
Gaussian focus?  with

Diffraction

Exit pupil
focal plane:

hA Il la i - :
vieasured Diffraction focus i

wavefront

Z::i(p, 9) — Rm(p)eunﬁ

| R (p) = — lm [li]k [{.02 - l}kp““”]

O (r,0)

Reference Pt o g ]
Mysvefront aberration

waveliront
Gaussi 2k
Foca;ilsprsl::e 2%! P dp
— : : _ _ _ The Strehl ratio is related to the mean square
Strehl ratio: gives the maximum intensity achievable with an deformation of the wavefront:
aberrated beam normalized to the one from an unaberrated
one (see Born&Wolf for a deeper discussion) I L
— 21 p2 — (P2
IPY 1 rars 2 —=1-k [‘1’ —(‘1’)]
WP = e J J il k(¥ ,p,6)—vp ms{ﬂ—w}—émrz]p dpdb| . Io
R

H,,'

@ CNRIND (i)
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Wavefront (transverse phase) aberrations: Characterization techniques

For the characterization of (ultra)short laser pulses, two types of WFS are most often employed

Shack-Hartmann WFS

Measures the displacements (with respect to an

unaberrated beam) of the spot of different beamlets &
focused by an array of lenses

D

Plane —
wave-front

S N
______ :131" W, ]
) S Aberrant i
1T T —— . wave-front *
IO Ll W
| W
Y W,
wavefront microlens
under study array
CNRINO 'Hﬁ For other WF measurement techniqes see H. Wang et al., High Power Laser Sci. Tech. 2, €25 (2014) 53’_) -PHOQS




Wavefront (transverse phase) aberrations: The Shack-Hartmann WFS
The spot deviation is related to the slope of the deformed

f Focal Spot Position
| 7 wavefront
\ |\ ([ ===
| f:jf?;?—s\ﬂefmml,ﬂsmu The displacements of the spot centroids with respect to a

Incomming pEE | f - . f the | |
P ) plane wave reference position is a measure of the loca

I —— Poyinting vector and thus the local gradient of the wavefront

/ / — o Y R
: Lens / Pinhole Array Lo oW ok B 1 X, —X,

il Array Detector S, = Dl v Tt U
owldy [ iy, Vel i

These data can be used to reconstruct the wavefront, starting from a polynomial expansion (for instance, a Zernike
L
dwlx,v) P (x,v)

expansion
P ) ﬁ[unl — - Cp————
! Nyl =AYy

Data from SH WFS can also be used to calculate “standard” beam parameters, such as the M? parameter:

M2 =2k - (i) — (xu)?

which depends on 2nd order moments of the so-called Wigner distribution:

2, (= (02U } 2 (Beij— (B - (= () - Iy o 2, Bei= BNy | 2, () allax)],
(%) = — : {xu) = — ) = +=
| 2 i ‘Ilj..ll E if 1’,‘_.: k 42” f;‘;‘
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Correction of WF aberrations using deformable mirrors

——————

2
_-="  Deformable ]
.~ mirror

f" %
F.
F
¥ |
= 2 "
Far-field § ek .
Measurement s disk an-pmir'-r?r
(12-bit CCD) Amplifier A
3ID-2 amgiifier
[nteraciion chamber
i -
- . & mm
Far-field ampifier
Measurement | | “SS=——2 = |
(12-bit CCDy i
2-PARS ;—
VACLUUM [ — I—
COMPRESSOR o S— K md
L from front-end
100 J
SI1D1
telescope

Far-field measurement
(12-bit CCDY
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Raw image from SH detector

Retrieved local displacement from local
reference centroid

T T T - T T l'
- W
160 ¥
100 | Y bl o i - %
50 w, w > ¥
] R g bl e " 5 N
50 #
ok II. I\ 3] N
100 -
e i | K
150
200 -
X bt X
= 3 -
250 | b e
¥
Y § . b
300
: k % T *,
L 1 1 "
=300 =200 -100 o 100 200

% I-PHOOS



Retrieved wavefront

Peak to Valley:0.27927 waves

I RMSE:0 0686036 waves

Phase, waves

Vertical Astigmatism

VJ I-PHOQS
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Wavefront aberrations introduced by incorrect OAP alignment

Wavefront distortions can also be introduced by incorrect
Off-Axis Parabola (focusing optics) alignment

Even for very small angles of misalignment, this results in
focal spot broadening and thus both maximum intensity

and Strehl ratio degradation

1 “ ...
0.96 . "
0.9z - -

F 1 -

088 g &
.84 & Y

e F Y

0.8
-06-04-02 0 02 04 06
B, (deg)

1:..':1: ':'!"'U':l

— see Gabriele's talk

1 W L]

096 = "

=096

0.64 .- -.

0.8z
-06-04-02 0 02 04 06

B, (deg)

v (Um)

v (Um)

v (Mm)

20 0.25
10 e
0.15
0
0.1
-10 0.05
-20
—20-10 0 10 20
u (pm)
30 0.06
0.05
15 0.04
0 0.03
0.02
=1 0.01
= 0
~30-15 0 15 30
u (pm)
30 0.018
0.015
15 0.012
0 0.009
0.006
-15 0.003
-30

0.0
—30-15 0 15 30
u (pm)

L. Labate et al., Appl. Opt. 55, 6506 (2016)

v (pm)

v (pm)

v (pm)

30
15
0
-15
—30

30
15
0
=13

30
15
0
-15
=30

u (pm)

u (pm)

u (dm]

012

0.08
0.06
0.04
0.02

0
-30-15 0 15 30

0.025
0.02
0.015
0.01
0.005

0
—-30-15 0 15 30

0.012
0.009
0.006
0.003

0
-30-15 0 15 30
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Wavefront aberrations introduced by incorrect OAP alignment (2)

Wavefront sensing and active correction with deformable . ,

. : _ 21 s e
mirrors can also be used to compensate for OAP I N e x10" o
misalignments ' - |

fEEdbﬂCk } Detormable

MUrTor

focal field
characterization

Ipeaic=(6.920.7)x10** W /em®
Shack-Hartmann
Wavefront sensor achromat

S0, 90*
paraboloid

|
|
Sr ]
VW .: __"2-—_-:_-:‘__;“- z(\\
Apo-Plan Infinity Corr

Objective, NA=0.T5, 4{=

Characterization of focal field formed by a large
numerical aperture paraboloidal mirror and
generation of ultra-high intensity (10> W/cm?)

R 1,4, =]
S A Appl. Phys. B 80, 823-832 (2005)

e T A Pl ANCHON?
/
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Phase retrieval from intensity measurements

The above measurement techniques all required a “direct”
characterization of the wavefront.

In 1972 Gerchberg and Saxton proposed a technique
(actually already in use in other fields) to retrieve the phase
from pure intensity measurements.

Let us consider 2 images of the beam, taken at 2 positions.
By theoretical arguments, we know how the fields at the 2
positions are related to each other. For instance, in the
paraxial approximation, | have a Kirchoff integral:

e
k exp (ik - )
2z e . x'2 + }:'2 . '+ }..'}:'
E(x,y,z) = E(x',y’,0)exp| ik T = jk—— L dx"dy.

21z

i
A

This equation provides me with a propagation operator, P (and its inverse P-1)
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Phase retrieval from intensity measurements

| can thus retrieve the phase (wavefront) by pure intensity
measurements using the following algorithm:

(1) = /T ito

E? — p [E(l]f] .

— VI ES.

|E2)]

T

Y

l)f =/ (1) EM) - E{l) s P-l [E(Q)r]

IE,(I)|

The algorithm can either be stopped after a given number of iterations, or when a

condition, encompassing a metric, is met. For instance, one can calculate the following

quantity at each iteration

RINO (i)
N

j = E jf (E(” = \/[T”)zdxdy.
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