

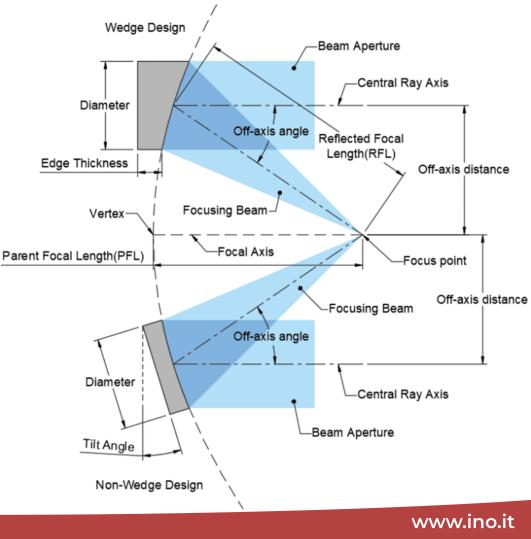
Introduction to Off-Axis Parabola Alignment

Gabriele Bandini, PhD

High Power Laser Diagnostics and Data Analysis

Off-Axis Parabolic Mirror (OAP)

- **OAPs** are used in optics in general, but also astronomy, optical microscopy, optical communications, biomedical imaging and, as in our case, **laser beam steering and focusing**.
- They require **precise machining**, and their **cost can vary from 100s to some 10000s €**, depending on size, surface quality and coating.
- **OAPs are essential devices** to focus ultrashort laser pulses up to relativistic (≥10¹⁷ W/cm2) intensities without nonlinear and dispersive effects induced by transmissive focusing optics.

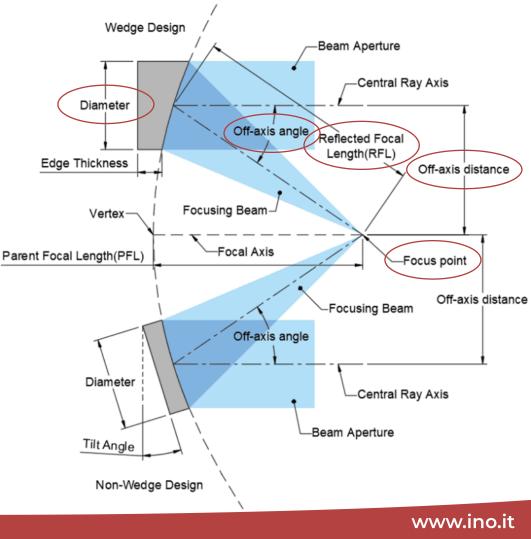


Off-Axis Parabolic Mirror

OAPs are sections of a parent paraboloid, used off-axis so that the input/output beam paths don't physically intersect the mirror's axis.

This is great for avoiding central obstructions (like in telescope secondary mirrors), but it also makes the system:

- Highly non-symmetric
- More sensitive to input beam angle and position
- Very alignment-critical



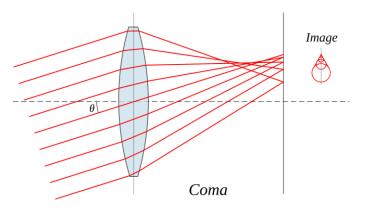
Off-Axis Parabolic Mirror

OAPs are sections of a parent paraboloid, used off-axis so that the input/output beam paths don't physically intersect the mirror's axis.

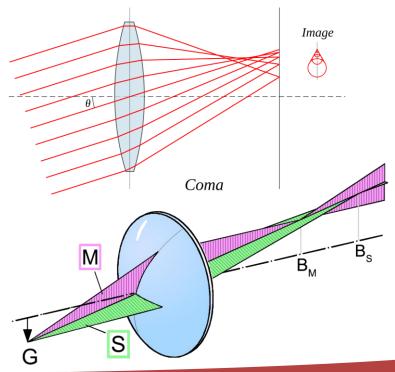
This is great for avoiding central obstructions (like in telescope secondary mirrors), but it also makes the system:

- Highly non-symmetric
- More sensitive to input beam angle and position
- Very alignment-critical

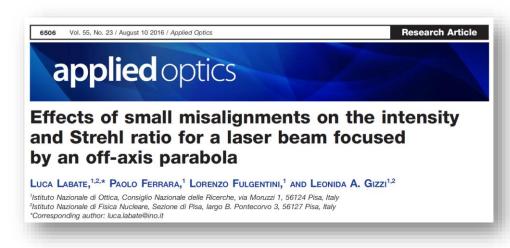
Aberration	OAPs?	Description
Chromatic aberration	NO	Dispersion in refractive elements , not present in mirrors, for instance variation in focal length with wavelength
Spherical aberration	Not in ideal paraboloids	Spherical shape instead of parabolic , not present in ideal OAPs for common f-numbers in our field, peripheral rays focus on a different point than central rays
Coma	YES	Variation in magnification over the clear aperture, rays at different heights on the mirror don't converge perfectly, leading to asymmetric blurring of the focus spot
Astigmatism	YES	Off-axis geometry introduces different curvatures in orthogonal planes, especially with large off-axis angles or wide beams; rays in the vertical and horizontal planes focus at different distances , focus appears elliptical or as a line rather than a point

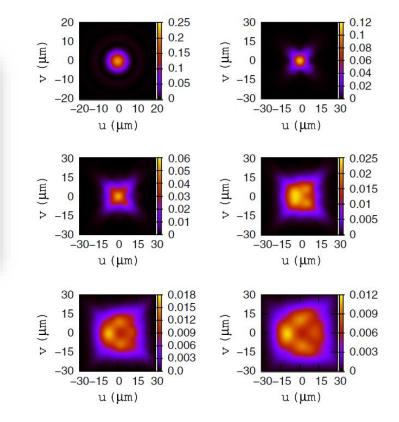

Aberration	OAPs?	Description
Chromatic aberration	NO	Dispersion in refractive elements , not present in mirrors, for instance variation in focal length with wavelength
Spherical aberration	Not in ideal paraboloids	Spherical shape instead of parabolic , not present in ideal OAPs for common f-numbers in our field, peripheral rays focus on a different point than central rays
Coma	YES	Variation in magnification over the clear aperture, rays at different heights on the mirror don't converge perfectly, leading to asymmetric blurring of the focus spot
Astigmatism	YES	Off-axis geometry introduces different curvatures in orthogonal planes, especially with large off-axis angles or wide beams; rays in the vertical and horizontal planes focus at different distances , focus appears elliptical or as a line rather than a point

Aberration	OAPs?	Description
Chromatic aberration	NO	Dispersion in refractive elements , not present in mirrors, for instance variation in focal length with wavelength
Spherical aberration	Not in ideal paraboloids	Spherical shape instead of parabolic , not present in ideal OAPs for common f-numbers in our field, peripheral rays focus on a different point than central rays
Coma	YES	Variation in magnification over the clear aperture, rays at different heights on the mirror don't converge perfectly, leading to asymmetric blurring of the focus spot
Astigmatism	YES	Off-axis geometry introduces different curvatures in orthogonal planes, especially with large off-axis angles or wide beams; rays in the vertical and horizontal planes focus at different distances , focus appears elliptical or as a line rather than a point

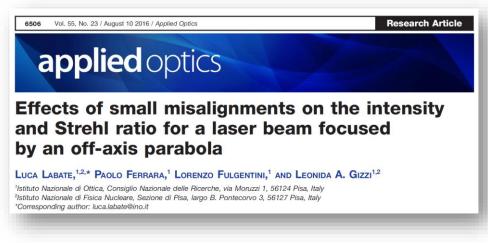


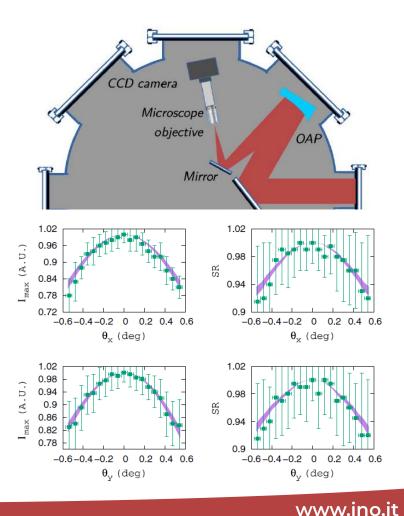
Aberration	OAPs?	Description
Chromatic aberration	NO	Dispersion in refractive elements , not present in mirrors, for instance variation in focal length with wavelength
Spherical aberration	Not in ideal paraboloids	Spherical shape instead of parabolic , not present in ideal OAPs for common f-numbers in our field, peripheral rays focus on a different point than central rays
Coma	YES	Variation in magnification over the clear aperture, rays at different heights on the mirror don't converge perfectly, leading to asymmetric blurring of the focus spot
Astigmatism	YES	Off-axis geometry introduces different curvatures in orthogonal planes, especially with large off-axis angles or wide beams; rays in the vertical and horizontal planes focus on different distances , focus appears elliptical or as a line rather than a point




www.ino.it

Theoretical background


Theoretical framework for the **calculation of the intensity distribution** of a super-Gaussian laser beam focused by an OAP in the presence of **possible misalignments**, with attention on the effects induced on the maximum intensity and the energy encircled in the main focal spot.



Theoretical background

Theoretical framework for the **calculation of the intensity distribution** of a super-Gaussian laser beam focused by an OAP in the presence of **possible misalignments**, with attention on the effects induced on the maximum intensity and the energy encircled in the main focal spot.

Theoretical background

6506 Vol. 55, No. 23 / August 10 2016 / Applied Optics

Research Article

applied optics

Effects of small misalignments on the intensity and Strehl ratio for a laser beam focused by an off-axis parabola

LUCA LABATE,^{1,2,*} PAOLO FERRARA,¹ LORENZO FULGENTINI,¹ AND LEONIDA A. GIZZI^{1,2}

¹Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy ²Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Iargo B. Pontecorvo 3, 56127 Pisa, Italy ^{*}Corresponding author: luca.labate@in.oi.t

Alignment procedure for off-axis-parabolic telescopes in the context of high-intensity laser beam transport

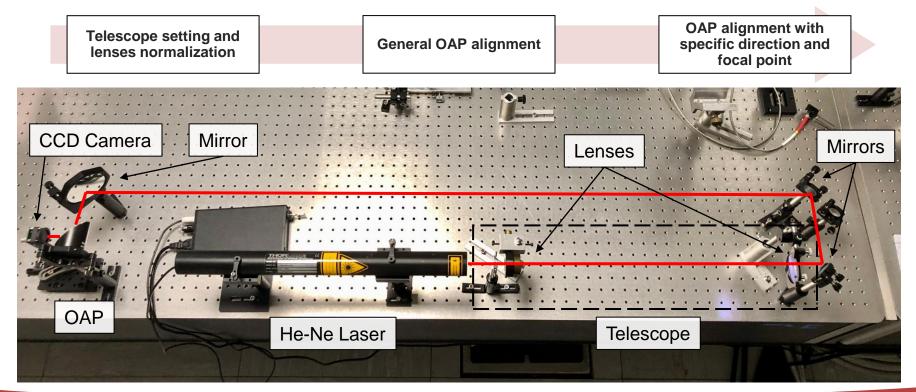
J. B. Ohland,^{1,2,*} ⁽¹⁾ Y. Zobus,^{1,2} U. Eisenbarth,¹ B. Zielbauer,¹ D. Reemts,¹ and V. Bagnoud^{1,3}

¹GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
²Institute of Nuclear Physics, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289, Darmstadt, Germany

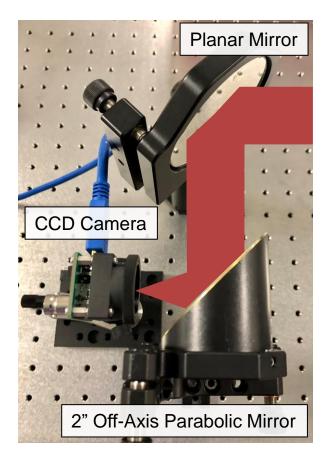
www.ino.it

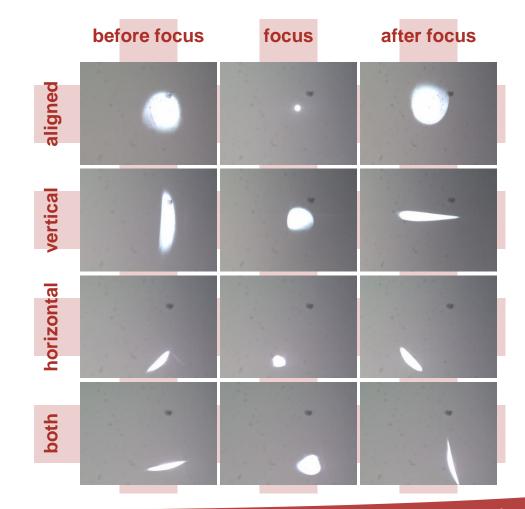
³ Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany *j.b.ohland@gsi.de

Null test of an off-axis parabolic mirror. I. Configuration with spherical reference wave and flat return surface


Jan Burke,^{*,1} Kai Wang,² and Adam Bramble²

¹CSIRO Materials Science and Engineering – Australian Centre for Precision Optics, PO Box 218, Lindfield, NSW 2070, Australia ²Centre for Lasers and Applications, Department of Physics, Macquarie University, NSW 2109, Australia ^{*}Corresponding author: jan.burke@csiro.au


Hands on activity: the experimental setup



www.ino.it

www.ino.it

Links and References

- https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9980
- https://www.youtube.com/watch?v=l8v8RyCi4HU&ab_channel=Thorlabs
- <u>https://avantierinc.com/resources/knowledge-center/mastering-off-axis-parabolic-mirrors/</u>
- Jan Burke, Kai Wang, and Adam Bramble, "Null test of an off-axis parabolic mirror. I. Configuration with spherical reference wave and flat return surface," Opt. Express 17, 3196-3210 (2009)
- J. B. Ohland, Y. Zobus, U. Eisenbarth, B. Zielbauer, D. Reemts, and V. Bagnoud, "Alignment procedure for off-axis-parabolic telescopes in the context of high-intensity laser beam transport," Opt. Express 29, 34378-34393 (2021)
- Luca Labate, Paolo Ferrara, Lorenzo Fulgentini, and Leonida A. Gizzi, "Effects of small misalignments on the intensity and Strehl ratio for a laser beam focused by an off-axis parabola," Appl. Opt. 55, 6506-6515 (2016)

