

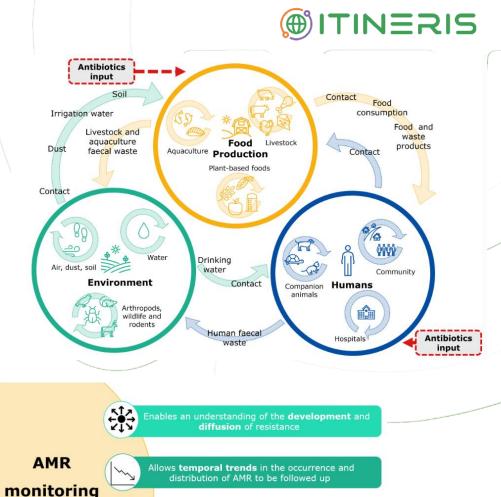
of *Enterococcus* spp. from Conventional and Organic Farms: Impact of Antibiotic Use on AMR Profiles

A. Mallardi *, J. F. Filipe, H. Delower, F. M. De Santanna, B. Castiglioni, P. Moroni, P. Cremonesi

*alessandra.mallardi@ibba.cnr.it

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

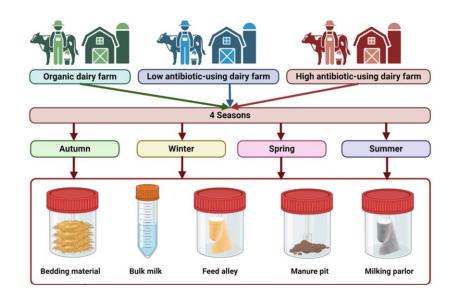
Background


Antimicrobial resistance (AMR) emergence

- Significant concern for human and animal health
- Common infection harder to treat
- Spread of AMR bacteria and determinants across settings
- European One Health Action Plan (2017)

Enterococcus spp.

- Hospital-acquired infection (E. faecium, E. faecalis)
- Gastrointestinal tract commensals
- Adaptability and ability to acquire and transfer resistance genes
- Indicators bacteria in AMR surveillance


Provides reliable indicators and relevant risk assessment data for evaluating targeted

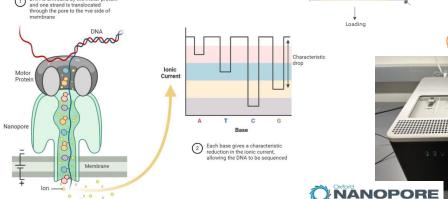
of bacteria

Objective and Experimental procedure

Investigate and compare the diffusion and the AMR profiles of *Enterococcus* spp. from dairy farms with different Defined Daily Dose usage: LOW, HIGH and ORGANIC (no use)

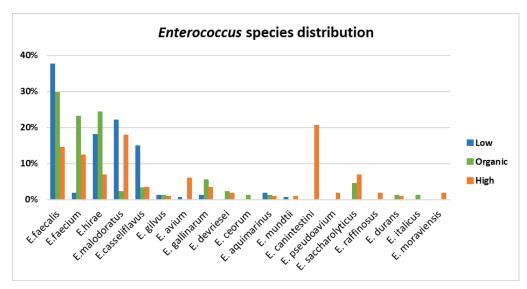
- 1. Sampling (2023-2024) from:
 - environmental sources
 - milk

2. Isolation and identification with MALDI-TOF



3. DNA extraction

4. Library preparation and sequencing



Preliminary results and work in progress

Species identified:

E. coli, Klebsiella spp and Enterococcus spp

- *E. faecalis*, *E. faecium* and *E. hirae* as potential indicators of farms with low or organic antibiotic use
- E. malodoratus and E. canintestini were associated with farms using antibiotics
- *E. hirae* the most widespread in environmental samples in all farms
- 28 sample of *E. hirae* were sequenced

Genome assembly results: AAC(6')-Ia and related AACs genes in **90%** of isolates

Resistance to aminoglycosides (streptomycin, gentamicin, tobramycin)

AMR Mechanism	Genes
Antibiotic inactivation enzyme	AAC(6')-Ia (and related AACs)
Antibiotic target in susceptible species	Alr, Ddl, EF-G, EF-Tu, folA, Dfr, gyrA, gyrB, inhA, fabl, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, S12p
Antibiotic target modifying enzyme	RlmA(II)
Antibiotic target protection protein	Lsa(A)
Gene conferring resistance via absence	gidB
Protein altering cell wall charge conferring antibiotic resistance	GdpD, MprF, PgsA
Regulator modulating expression of antibiotic resistance genes	LiaF, LiaR, LiaS

Sequencing and data processing in progress:

E. faecium/ E.faecalis/ E. hirae

E. malodoratus/ E. canintestini

from different environmental and milk sources

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

