

Tracing Carbon in the Sky: CO₂ and CH₄ Isotope Signatures under Dust and Fire Events at the POT Station, Part of the CIAO Observatory (CNR-IMAA)

I.Zaccardo^{1,2}, A. Buono¹, E. Lapenna¹, F. Cardellicchio¹, T. Laurita¹, D. Amodio¹, C. Colangelo¹, G. Di Fiore¹, S. Trippetta¹, G. Masiello², L. Mona¹

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

¹ National Research Council – Institute of Methodologies for Environmental Analysis (CNR-IMAA), Contrada S. Loja, I-85050, Tito Scalo, Potenza, Italy,

² Department of Engineering, University of Basilicata, Via dell' Ateneo Lucano, 10, I-85100 Potenza, Italy

Lapenna, E. et al. Atmosphere, 2025

ISOTOPIC CARBON MONITORING

- Instrument for stable carbon isotope analysis of CO₂ and CH₄, purchased with ITINERIS
- ICOS tower and lines used for the instrument implementation
- 2 ITINERIS TNAs for gaining expertise on isotope analysis
- 1 high-resolution isotopic dataset
- 2 papers

Buono, A. et al. (2025). Dataset. ITINERIS HUB

Buono, A. et al. Atmosphere, 2025

Zaccardo, I. et al. In preparation

Which Are Stable Carbon Isotopes?

- Carbon atoms with different neutron numbers but the same atomic number
- Non-radioactive and do not decay over time
- Useful for source apportionment
- ¹²C (about 98.9%)
- ¹³C (about 1.1%)
- Ratio of ¹³C to ¹²C (¹³C/ ¹²C)in a sample
- Vienna Pee Dee Belemnite (VPDB)
 Reference standard
- Delta values $\delta^{13}C-CH_4$, $\delta^{13}C-CO_2$ (%)

$$\delta^{13}C = \left(\frac{(^{13}C/^{12}C)_{sample}}{(^{13}C/^{12}C)_{standard}} - 1\right) \times 1000$$

The Role of Isotopic Analysis in Atmospheric Research

Identifying Emission Sources

Studyng Carbon Exchange between Atmosphere, Biosphere and Oceans

Improving Climate Models for Source
Apportionment and Greenhouse Gas
Inventories

Isotopic Fingerprints of Natural and Anthropogenic Emissions @ ITIN≡RIS

$\delta^{13}C-CH_4$

- Atmospheric background: ~ –47‰
- Biogenic sources:

wetlands, rice paddies, ruminants \rightarrow -65% to -55%

Fossil fuel sources:

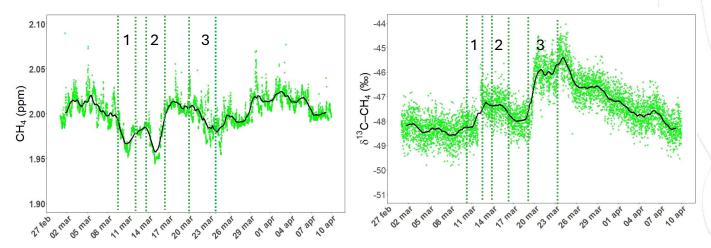
fugitive emission \rightarrow **-55% to -25%** incomplete combustion (natural gas, coal, oil) \rightarrow **-29% to -13%**

Biomass burning (CH₄):

Variable depending on vegetation type \rightarrow **-30%** to **-20%**

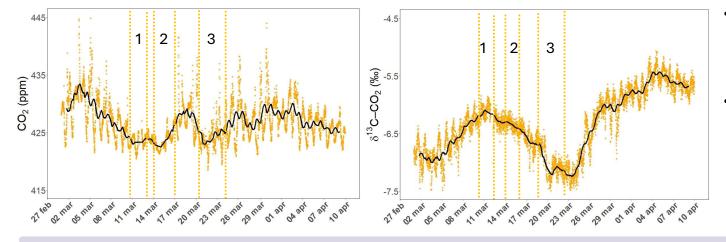
$\delta^{13}C-CO_2$

- Atmospheric background: ~ –7.5‰
- Fossil fuel combustion:


Coal, gasoline, natural gas \rightarrow -30% to -28%

Biomass burning:

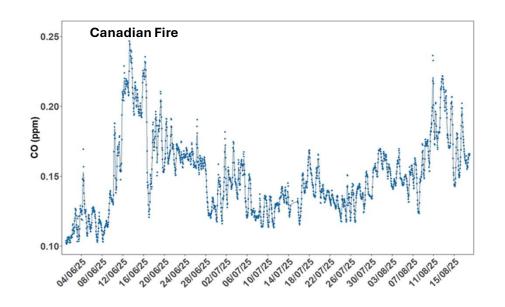
- -C₃ vegetation (e.g., trees, shrubs) \rightarrow -35% to -25%
- -C₄ vegetation (e.g., savanna grasses) \rightarrow −16‰ to −12‰


Can Saharan Dust Intrusions Alter the Isotopic Composition of CH₄ and CO₂?

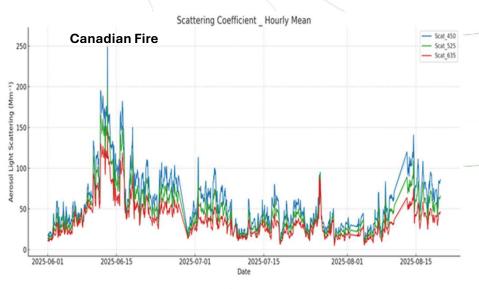
- CH₄ ↓ → Decrease in mole fractions suggests isotopic fractionation
- $\delta^{13}C$ -CH₄ \uparrow \rightarrow Enrichment indicates enhanced oxidation linked to mineral aerosols.

MDSA mechanism by Marten et al. (2023)

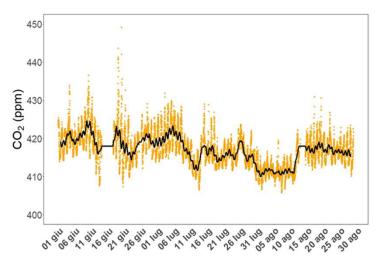
- CO₂ ↑ → Increased concentrations due to reduced photosynthesis (radiative suppression).
- δ¹³C−CO₂ ↓ → Decline reflects lower ¹²CO₂ uptake during dust events.

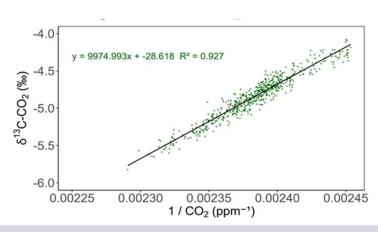

Kinetic Isotopic Effect

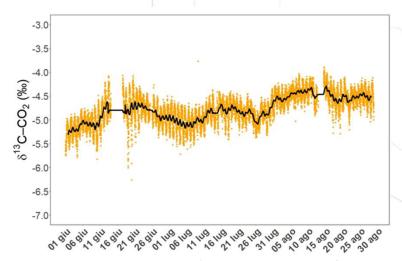
Paper under review



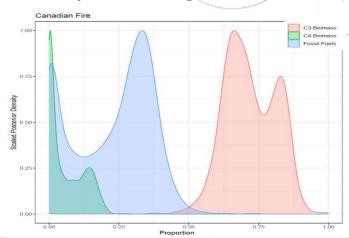
Wildfires Observations, Isotopic Tracers and Source Apportionment -Methodology-


1. - CO Peak Detection


2. - Peaks in scattering coefficients



3. High-Frequency Isotopic Monitoring



4. Keeling Plot Construction

5. Bayesian Mixing Model (MixSIAR)

ITINERIS

Perspectives

- **Expand Temporal Coverage** Extend isotopic monitoring across multiple seasons to capture long-term trends and variability.
- Model Coupling Combine isotopic data with atmospheric transport models to improve spatial resolution of source apportionment.
- Policy Relevance Translate findings into actionable insights for climate mitigation strategies and emission inventories.
- Cross-Station Collaboration Enhancing collaborative efforts within the emerging national consortium for isotope monitoring

THANKS!

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

