

Non-refractory submicron aerosols in the Po Valley: Sources, vertical transport, and chemical composition from measurements at Bologna and Mt. Cimone within AirPoDynamic

M. Rapuano¹, C. Magnani¹, M. Rinaldi¹, M. Paglione¹, A. Bracci¹, F. Pasqualini¹, L. Renzi¹, M. Mazzini¹, S. Montaguti¹, C. R.Calidonna², M. Zanatta¹, C. Perfetti¹, N. Zannoni¹, S. Decesari¹, A. Marinoni¹.

¹ Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Bologna, 40129, Italy

²Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Lamezia Terme, 88046, Italy

Intro and goal

AirPoDynamic campaign (Aug - Sep 2024) aims at characterizing aerosol ageing along vertical transport in the Po Valley, comparing a low-altitude urban site (BO) and a high-altitude remote site (CMN).

BO

Q-ACSM

Urban site 54 m a.s.l.

ITINERIS

CMN "O. Vittori" Observatory

Remote site 2167 m a.s.l

Non Refractory (NR) PM₁

Mt. Cimone

How do Planetary Boundary Layer (PBL) and seasonality affect NR-PM₁ during the campaign?

At CMN:

- NR-PM₁ concentration decrease (lower concentration in Free Troposphere (FT))
- SO₄ relative increase (higher relative abundance in FT)

At BO:

NO₃ relative increase (thermally-driven partitioning into particle phase)

At both sites:

- Org consistently decrease
- NH₄ is more stable
- Chl is negligible

Positive Matrix Factorization

Data input

Org Mass Spectra

Org Time Series

Canonaco, F. et al., Atm. Meas. Tech. 6, 3649-3661 (2013).

PMF algorithm

Factors: recurring chemical classes from specific Organic Aerosol (OA) sources/formation processes.

Source Apportionment

Primary emitted aerosol (HOA and BC) is influenced Mixed Aerosol Layer (MAL) heigh.

Hydrocarbon-like OA (HOA):

From traffic, strongly correlated (R > 0.85) with Black Carbon from liquid fuel combustion (BC₁₅)

Secondary OA (MO/LO-OOA) is less affected by the MAL diurnal variation

More-Oxidized Oxygenated OA (MO-OOA):

Highly aged/oxidized OA from photo-oxidation.

Less-Oxidized Oxygenated OA (LO-OOA):

Less oxidized OA, linked to primary sources and secondary formation.

Source Apportionment

Mt. Cimone

BC and POA-linked factors show a high correlation (R>0.9), confirming the transport from lower altitudes.

Local OA (LOA):

A POA-like factor, likely influenced by anthropogenic activities near to Mt. Cimone.

LO-OOA - Less-Oxidized Oxygenated OA:

Less aged POA-linked factor, more pronounced variation when vertical mixing is enhanced.

Highly aged OA are less affected by PBL-dynamics

MO-OOA – More-Oxidized Oxygenated OA:

It constitutes the regional background factor.

Conclusions

At low-altitude: measurements display a pronounced dilution of primary anthropogenic species, induced by vertical mixing.

At high-altitude: aerosol measurements show higher concentrations in warm periods, when PBL-driven transport is enhanced.

At both sites: more oxidized SOA are less affected by PBL dynamics.

THANKS!

m.rapuano@isac.cnr.it

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

