

Plant growth-promoting rhizobacteria as a sustainable method to enhance drought tolerance in tomato crop

G. Atzori, C. Lorenz, A.P.M. Fabbri, S. Mazzoni, F. Menicucci, M. Centritto giulia.atzori@cnr.it

Institute for Sustainable Plant Protection (IPSP),
National Research Council of Italy (CNR), Sesto Fiorentino, Italy

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

CC7 strain: selected for the production of ACC-deaminase, that lower ethylene levels

PK18: produces IAA (cell division, elongation, differentiation, root, xylem development), solubilize P

AIM OF THE EXPERIMENT

- to assess if **PGPR inoculation affected growth** by measuring plants' biomass and height
- to investigate **plants responses to water deficit** exposure **and PGPR inoculation** by measuring physiological parameters (*i.e.*, gas exchange, chlorophyll fluorescence and leaves ABA content)
- to elucidate the impact of inoculation and its duration on the soil microbiome

ANALYSES

- to assess if **PGPR inoculation affected growth** by measuring plants' biomass and height
- to investigate plants responses to water deficit exposure and PGPR inoculation by measuring physiological parameters (i.e., gas exchange, chlorophyll fluorescence and leaves ABA content)
- to elucidate the impact of inoculation and its duration on the soil microbiome

ANALYSES

biomass and biometrics

soil 16S metabarcoding

RESULTS

@ITINERIS

- Increased biomass production in MIXand in CC7-inoculated plants
- Increased height and dry weight in MIXtreated plants in well-watered and water stress regimes

WS NOI

treatments

At the moderate water stress point, MIX consortium positively impacted tomato
 photosynthetic response and stomatal conductance

- In NOI plants, ABA did not change in time
- In MIX plants ABA increased at severe water stress
- # Hypotesis:

MIX: stomatal diffusive limitation as main driver of photosynthetic decline under progressive water deficit

NOI: biochemical limitations (since leaf ABA content did not change between moderate and severe water stress)

MAIN FINDINGS

- In the pot experiment, the CC7 and PK18 strains acted synergistically in the MIX treatment promoting the growth of tomato under water deficit
- © Given the similarities between MIX and CC7 treatments, we hypothesize a key role of CC7 in the overall effect of the MIX consortium
- In field conditions, the PGPR effect was less evident
- Mix-treated plants performed better under full water regime, but water availability remained the primary determinant of physiological and productivity responses
- Ongoing second year of field trial with repeated PGPR applications

CONCLUSIONS

- Biostimulants are emerging as sustainable strategies to improve crop tolerance to drought
- Differences in the results obtained in semi-controlled versus field conditions
- ©Complexity of translating PGPB efficacy to field conditions, with environmental variability and microbial fitness strongly determining outcomes

Starting in 2022, a series of state-of-the-art research infrastructures, advanced platforms for digital agriculture and high-throughput phenotyping (HTP), have been assembled by a dedicated team of researchers from the Italian National Research Centre Institute for the Sustainable Protection of Plants (CNR -IPSP), primarily based in Sesto Fiorentino (Florence) & Metaponto (Basilicata)

CNR IPSP SESTO FIORENTINO

M. Centritto

G. Marino

M. Haworth C. Brunetti

V. Lazazzara F. Alderotti

A. Conte

A.P.M. Fabbri S. Mazzoni F. Menicucci

(#) ITINERIS

G. Atzori

CNR IPSP METAPONTO

A. Daccache

D. Danzi

THANKS!

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

