MONITORING CLIMATE AND LAND-USE CHANGE IMPACTS ON ALPINE VEGETATION DYNAMICS AND CARBON SINKS D. Ferraris¹, M. Galvagno², L. Oddi³, G. Filippa², E. Cremonese⁴, P. Pogliotti², F. Grosso², U. Morra di Cella^{2,4}, S. Koliopoulos², C. Guarnieri², G. Wohlfahrt⁵, G. Leitinger⁵, M. Migliavacca⁶, A. Hammerle⁵, D. Papale^{1,7} ¹ Università degli Studi della Tuscia, Viterbo, Italy. ² Environmental Protection Agency of Aosta Valley (ARPA VdA), Climate Change Dept., Aosta, Italy. ³ Department of Life Sciences and Systems Biology, University of Turin, Italy. ⁴ CIMA Research Foundation, Savona, Italy. ⁵ Department of Ecology, University of Innsbruck, Austria. ⁶ European Commission, Joint Research Centre (JRC), Ispra, Italy. ⁷ National Research Council (CNR) - IRET, Rome, Italy. # INTRODUCTION: MONITORING SITES Aosta Valley region, northwest Italian Alps, 2100 m asl ICOS Associated site Torgnon (IT-Tor) Transition from the abandoned pasture to a mature larch forest #### METHODS: TO ESTIMATE VEGETATION GROWTH - ☐ Abandoned subalpine pasture (total exclusion since 2010) - ☐ Area of 15000 m2 - ☐ Field surveys on larches and shrub species - ☐ GNSS mapping (5 cm accuracy) - ☐ Annual **UAV images** (since 2012) - ☐ New installed eddy covariance station in November 2024 on encroached area #### **SURVEY RESULTS** In recent years, an increase in size rather than in number has been observed. The presence of shrubs at the base of the trunk seems to be a requisite condition. ### GROWING SEASON MEAN TEMPERATURE, INCREASING TREND Daily mean air temperature data July and August (peak of the growing season) ### CO₂ FLUXES FRÔM THE **NEW INSTALLED EDDY** COVARIANCE **STATION** Disentangling the effects of grazing abandonment and climate change on vegetation dynamics and carbon sequestration #### Year 2025: mean diurnal variations