

The first Italian digital environment for Carbon-related data and dynamics

The service was delivered and includes:

- Italian Carbon and ecosystem fluxes
- Italian emission data
- Tools and facilities for analyses
- Research field data and models

Promotes data sharing, analysis, innovative research End user-oriented: facilitates reporting for administrations

https://itineris.d4science.org/group/itineris_carbon

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

The main VRE Carbon sections:

- (i) Above Ground Biomass: carbon stocks for Trento province, Tuscany, and maps for the Pantropical biome;
- (ii) Amospheric Inversion Models: sample products from 6 models, infographics, and R code;
- (iii) Carbon Fluxes Models: sample products from 3 models plus infographics and R code;
- (iv) GHG Emissions Italy: sample products from EDGAR and ISPRA with code and infographics
- (v) Local Research: data from local level research;
- (vi) SOCAT Ocean Data: sample products and references;
- (vii) **Test Isoscape**: isotope data and code, under development. In addition the An Instruction folder provides info on how to manage and upload contents in the VRE.

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

RESEARCH ARTICLE | ECOLOGY

Mycorrhizal symbioses and tree diversity in global forest communities

TYV > q-bio > arXiv:2505.19199

Quantitative Biology > Populations and Evolution

[Submitted on 25 May 2025]

Pan-tropical plant functional trait variation from space

David Schimel, Andres Baresch, Adam Chlus, Phil Townsend, Fabian Schneider, Gaia Vaglio Laurir

Ecological Informatics

Volume 84, December 2024, 102867

Chiara Zabeo ^a △ ☒, Gaia Vaglio Laurin ^{a b}, Birhane Gebrehiwot Tesfamariam ^a, Diego Giuliarelli ^a, Riccardo Valentini ^a, Anna Barbati ^a

Mediterranean Natural Reserve

The VRE C supported several research activities, e.g. linking Carbon-related resources with:

Ecological Indicators

Volume 172, March 2025, 113254

Ecosystem Functional Properties at ICOS sites

Habitat Biodiversity

Pan-tropical forest trait variations

Forest health

Monitoring habitat diversity with PRISMA hyperspectral and lidarderived data in Natura 2000 sites: Case study from a Mediterranean forest

Gaia Vaglio Laurin ^{a b} △ ☒, Chiara Zabeo ^b, Diego Giuliarelli ^b, Birhane Gebrehiwot Tesfamariam b, Alexander Cotrina-Sanchez b, Riccardo Valentini ^b, Basil Tufail ^c, Bartolomeo Ventura ^c, Carlo Calfapietra ^a

SPIE. DIGITAL LIBRARY

Dario Papale

Event: Remote Sensing, 2024, Edinburgh, United Kingdom

Linking hyperspectral PRISMA data with

ecosystem functional properties at ICOS sites

Remote Sensing Applications: Society and Environment

Volume 36, November 2024, 101329

chestnut and cork oak forests in central Italy with remote sensing

Alessandro Sebastiani ^a, Matteo Bertozzi ^c, Andrea Vannini ^b Carmen Morales-Rodriguez b, Carlo Calfapietra a, Gaia Vaglio Laurin b 💍 🖾

- 1 Ecosystem Functional Properties estimated from satellite PRISMA and
- 2 Sentinel-2 data over different European sites and plant functional types
- 3 Gaia Vaglio Laurin¹, Lorenza Nardella², Alessandro Montaghi³, Alessandro Sebastiani⁴,
- 4 Bartolomeo Ventura⁵, Alessandro Mei⁶, Carlo Calfapietra², Dario Papale¹

EFPs from 15 sites, with different plant function types, were modeled using PRISMA hyperspectral and Sentinel-2 multispectral satellite data.

Ecosystem Functional
Properties (EFPs), computed
from flux tower data, provide
a dynamic view of
ecosystem carbon and
energy related processes
(GPP, LUE, WUE, NEE etc.)

EBF = Evergreen Broadleaf Forest (2 sites);

ENF = Evergreen Needleleaf Forest (5 sites);

DBF = Deciduous Broadleaf Forest (3 sites);

GRA = Grassland (3 sites);

WET = Wetland (2 sites)

Comparisons: Random Forests vs. XGBoost PRISMA vs. S2 as input data

- Best models with PRISMA (R2: GPP 0.71; NEE 0.61; LUE 0.62; BW 0.37; WUE 0.03)
- XGBoost similar results but many parameters to be tuned
- Sentinel-2 lower results (R2: GPP 0.65; NEE 0.55; LUE 0.58; BW 0.5; WUE 0.03)

- No impact of PFT: model is independent from ecosystem type
- No impact of latitude
- SWIR bands are relevant especially for LUE; WUE is an issue also in other studies
- Next tests on larger datasets; with mixed effects models to recheck PFT role; after disturbance