

Integrated Geophysics and Data Science for Soil Moisture Characterization and Hydrogeological Risk Assessment in Urban and Peri-Urban Areas

L. Martino^{1,2}, G. Calamita¹, G. De Martino¹, E. Guegen¹, I. G. Lando³, V. Cioffi⁴, S. Uhlemann⁵, F. Canora², A. Perrone¹

¹Institute of Methodologies for Environmental Analysis, National Research Council (CNR-IMAA), 85050 Tito Scalo (PZ), Italy. ²Department of Engineering, University of Basilicata, 85100 Potenza, Italy. ³Department of Science, University of Basilicata, 85100, Potenza (PZ), Italy. ⁴Department of Geosciences, University of Padua, 35131 Padova (PD), Italy. ⁵Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany.

IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

Study area shaping the research methodology

Key messages

- Peri-Urban area Hydrogeologic risk Logistical ease and feasibility
 - Setup of an open-air laboratory
 - Methodology Multidisciplinary, multiscale, multiparametric approach
 - Geophysical, hydrologic and metereological data at lab, site scale

Key Results so far

field and lab strategies for site characterization

ITINERIS

Geomorfological survey

2D ERT modeling

H/V Microtremor Surveys

3D ERT modeling

Hydraulic conductivity

Key messages

- **Landslide Geometry**
- Heterogeneity Mapping
- Channeling bedrock
- **Building Prior Knowledge**

Ongoing Efforts bridging site and lab insights

Key messages

- Field-to-Lab Replication
- Imaging and TL Data analysis
- Comparing Processes Across Scales
- Assembling a Dataset

...On site

Next Steps

Data mining using Machine learning technique

Measured and Derived property

Model Inference

Processing & Modelling

We aim to apply machine learning to quantify relationships between time-lapse resistivity variations, measured hydrological properties, and derived geotechnical parameters, in order to develop predictive models of landslide body behavior over time.

Final Question

What is the real contribution that the ERT method can offer to advanced landslide monitoring, early warning systems, and to a broader range of applications, from agriculture to environmental remediation?

THANKS!

IR0000032 - ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

