

Directed Evolution with Evolv- λ for Protein Engineering

Davide Aiello^{1,2}, Matteo Ciciani², Federica Marelli², Marta Stancampiano^{1,2}, Veronica De Sanctis², Roberto Bertorelli², Eyemen Gafar Ali Kheir², Giulia Maule^{1,2}, Anna Cereseto², and Daniele Arosio¹

¹Institute of Biophysics, CNR, Via alla Cascata 56/C, 38123 Trento, Italy ²Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy

Directed evolution serves as a powerful approach for exploring protein function and engineering novel biotechnological tools. Traditional methods for targeted mutagenesis in human cells, however, are limited by reliance on base-editing deaminases, restricting the sequence space explored during evolution. We introduce Evolv- λ , a novel, unbiased mutagenesis platform that combines CRISPR-Cas9 with an error-prone variant of human DNA polymerase λ , enabling efficient and expansive genetic diversification in human cells. We evaluated Evolv- λ by rescuing the fluorescence of a mutated EGFP and performing ultra-deep sequencing to characterize mutation patterns. Evolv- λ generates mutations across 36-46 nucleotides around the target site with a frequency of 1.4e-4 substitutions per base, exhibiting no specific nucleotide bias. Moreover, it facilitates broader genetic modifications, including insertions and deletions. We further validated Evolv- λ by restoring functionality to a mutated blasticidin resistance gene and demonstrated its capacity to diversify sequences, modulating syncytia formation driven by the SARS-CoV-2 Spike protein in cultured cells. Evolv- λ thus represents a versatile and potent in vivo mutagenesis tool for human cells, with broad applications in biological research and biotechnological innovation.

