

A minimalistic phenomenological model of the FLASH effect.

I.Bodrenko, V.Tozzini CNR-NANO, Pisa

THE TUSCANY HEALTH ECOSYSTEM

NANO

NANO

NANO

CNR-NANO in Sub-project 2

Molecular mechanisms, in vitro validation and radiobiological effect modelling of ultra-high dose rate

CNRNANC

modeling & simulations cross-validation theory-experiment statistical data analysis

People @ NANO

Valentina Tozzini Melissa Santi Igor Bodrenko TD

Collaborations

Lorenzo Castelli Emanuele Scifoni Lorenzo Petrolli

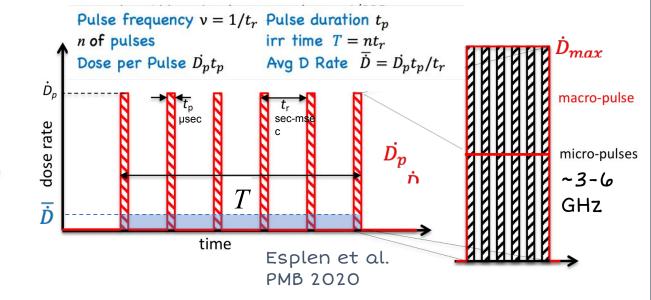
PhD student UniTn-NANO **INFN-TIFPA** Tn UnitTn

CPFR: F Di Martino, Fabiola Paiar, S Capaccioli, E Da Pozzo,...

M1.2.1 Developed and implemented multi-scale procedure for the in silico simulation of the UHDR

M1.2.2 Radiobiological effects at UHDR vs. CONV and radiation parameters

M1.2.3 Developed and implemented a database for sharing, elaborating and combining data from experiments and simulations



FLASH effect in a nutshell

UHDR kills cancer cells and spare normal cells Pulsed radiation enhances this effect

Irradiation parameters

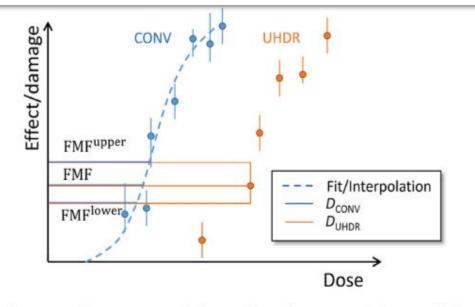
- Average dose rate and delivery time $\overline{\dot{D}}, T$
- $\checkmark \quad \text{Total delivered dose } D = \overline{\dot{D}} \times T$
- Width and separation of the pulses t_p , t_r
- ✓ Peak dose rate $\dot{D_p} = \overline{\dot{D}} t_r / t_p > 40 \text{Gy/s}$
- Intra-pulse structure: GHz modulation

Effect characterization: Define a function $F(\vec{D}, D, \vec{D}_p, v, ...)$ "Flash modifying factor" such that

- F describes the change of radiobiological effects in FLASH conditions $\rightarrow F(\overline{\dot{D}}, D, \overline{\dot{D}}_p, \nu) < 1 = sparing$
- **F**(\vec{D} , **D**, \vec{D}_p , **v**, ...) = 1 in conventional irradiation conditions
- F is expected to depend on: tissue type AND cell state (=cancer/normal) $\mathbf{F} = \mathbf{F}_{\text{tiss,state}}$

Selective FLASH effect: For given tissue $F_{tiss,normal} < F_{tiss,cancer}$ in some part of the $(\overline{\dot{D}}, D, D_p, v)$ parameter space

(> 1 = overkilling)



FLASH effect in Normal Tissue Complication Probability

Fig. 1. Conversion of dose-effect data to FLASH-modifying factor (FMF) values for in vivo data. Datapoints were used for ultrahigh dose rates (D_{UHDR}), and interpolated values for conventional dose rates (D_{CONV}). Uncertainties for FMF values (FMF^{upper} and FMF^{lower}) were obtained according to the same procedure but using the upper and lower error bar for the UHDR data, if available.

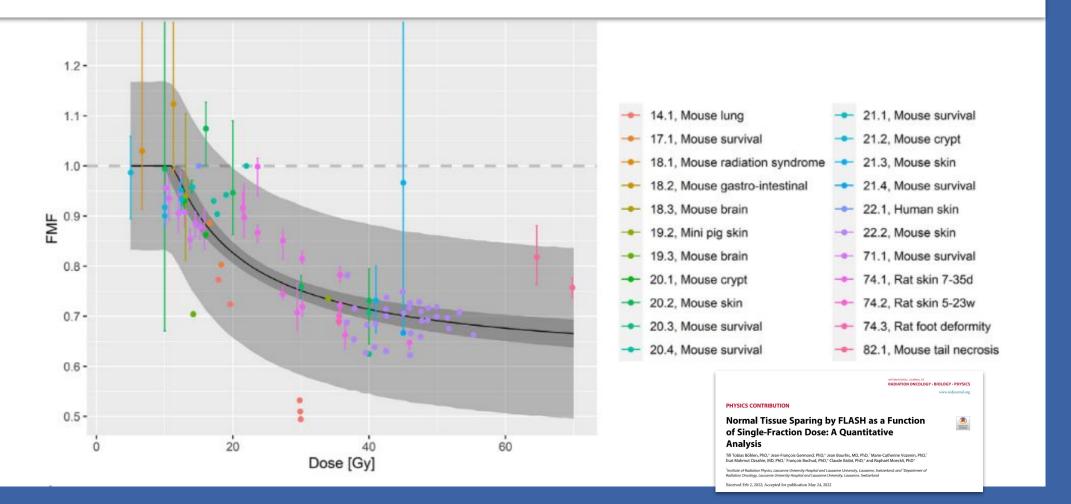
Definition of FLASH-modifying factor

Analogous to the definition of relative biological effectiveness for different radiation qualities,²⁵ the FLASH-modifying factor (FMF) for UHDR irradiations is defined as the ratio of doses that need to be administered at conventional dose rates (D_{CONV}) and UHDR (D_{UHDR}) to achieve an isoeffect for a given biologic system and endpoint:

$$FMF = \frac{D_{CONV}}{D_{UHDR}}|_{isoeffect}$$
(1)

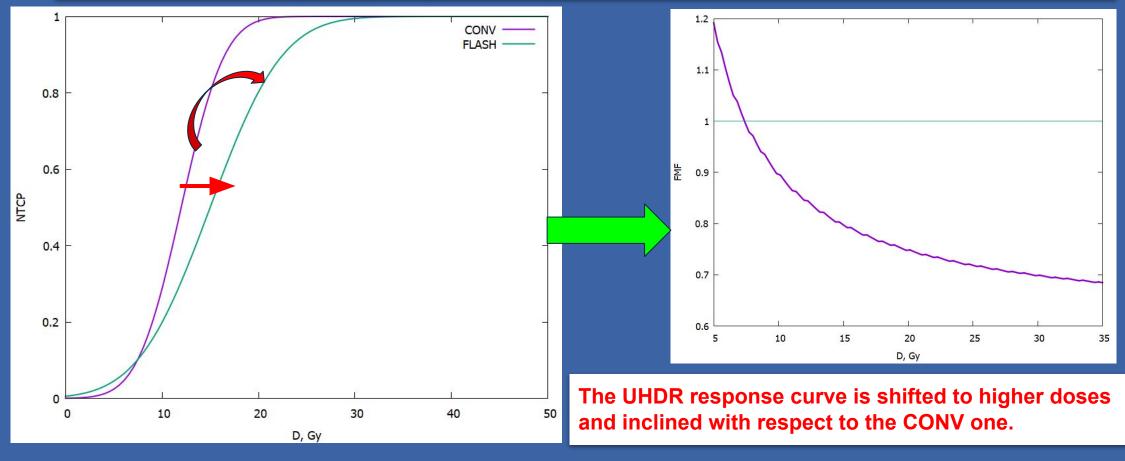
Received Feb 2, 2022; Accepted for publication May 24, 202

THE TUSCANY HEALTH ECOSYSTEM



FLASH effect in Normal Tissue Complication Probability

THE TUSCANY HEALTH ECOSYSTEM



FLASH effect in Normal Tissue Complication Probability

THE TUSCANY HEALTH ECOSYSTEM

Radiation response processes and the temporal scales

< 100 fs	100 fs - 1 us	1 us - 10 ms	> 10 ms
 primary electron crosses the cell (40 fs) secondary electrons slow down (10 fs) track termalization (10 fs) 		 chemical reactions of ions and radicals diffusion of ions/radicals within the cell R effect, Gy/s 	 biochemical reactions within the cell cellular response intercellular interactions

THE TUSCANY HEALTH ECOSYSTEM

Finanziato dall'Unione europea NextGenerationEU

Phenomenological stochastic model

Local cellular damage:

- direct and indirect local damage to the biomolecules
- <10 ms, < 100 nm

Biological response to the local damage

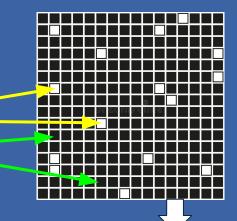
- >10 ms
- generation of cellular ROS, oxygen depletion
- damage of organelles
- cell malfunction or death
- tissue damage, etc.

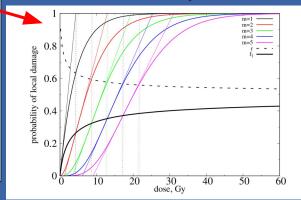
THE TUSCANY HEALTH ECOSYSTEM

Finanziato dall'Unione europea NextGenerationEU

Phenomenological stochastic model

Local cellular damage:


- direct and indirect local damage to the biomolecules
- <10 ms, < 100 nm


Biological response to the local damage

- >10 ms
- generation of cellular ROS, oxygen depletion
- damage of organelles
- cell malfunction or death
- tissue damage, etc.

Threshold model (extended STMH)

- the damage certainly happens if **m** or more electrons hit the site, equivalent of the threshold concentration of ions/primary radicals, $n_c = m^* n_0$ (probability 1);
 - it does not happen otherwise (probability 0); ____
- sigmoidal cumulative Poissonian distribution; -
- strong mesoscopic spatial fluctuations of ions/radicals concentration;
- the fluctuations of ion concentration dissipate due to recombination and diffusion in competition with the new ions generation at a given dose rate R - UHDR effect !!!

THE TUSCANY HEALTH ECOSYSTEM -

Finanziato dall'Unione europea NextGenerationEU

Phenomenological stochastic model

Local cellular damage:

- direct and indirect local damage to the biomolecules
- <10 ms, < 100 nm

Biological response to the local damage

- >10 ms
- generation of cellular ROS, oxygen depletion
- damage of organelles
- cell malfunction or death
- tissue damage, etc.

Minimalistic multiple sites model of the cell damage -(extended MTMH)

- $\boldsymbol{\diamond}$ there are \boldsymbol{M}_{c} critical sites in the cell;
- If the radiation causes local damage to at least any M_P of them the cell gets damaged with (probability 1);
 - otherwise the cell can be fully repaired (eventual biological effect probability equals 0).
- sigmoidal cumulative binomial distribution;

THE TUSCANY HEALTH ECOSYSTEM

Finanziato dall'Unione europea NextGenerationEU

Phenomenological stochastic model

Local cellular damage:

- direct and indirect local damage to the biomolecules
- <10 ms, < 100 nm

Biological response to the local damage

- >10 ms
- generation of cellular ROS, oxygen depletion
- damage of organelles
- cell malfunction or death
- tissue damage, etc.

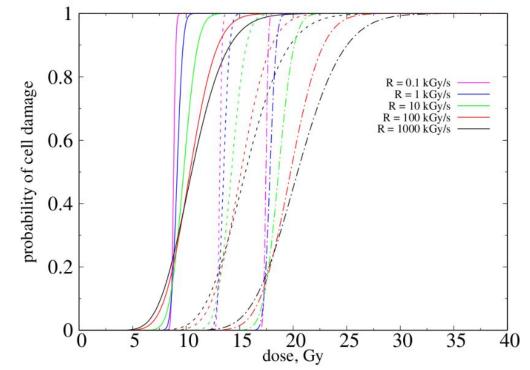


Figure.6.1.-1. The FLASH effect. The cell damage probability vs the absorbed dose and the dose rate (coded by different colors) for $\alpha_{c} = 2$ (solid lines), 3 (dashed lines) and 4 (dot-dashed lines). For all cases $\beta_{cd} = 0.8, M_c = 10, \lambda_r = 1/600 \, s^{-1}, D_w = 0.01 \, nm^2/ns.$

THE TUSCANY HEALTH ECOSYSTEM

Finanziato dall'Unione europea NextGenerationEU

Phenomenological stochastic model

Local cellular damage:

- direct and indirect local damage to the biomolecules
- <10 ms, < 100 nm

Biological response to the local damage

- >10 ms
- generation of cellular ROS, oxygen depletion
- damage of organelles
- cell malfunction or death
- tissue damage, etc.

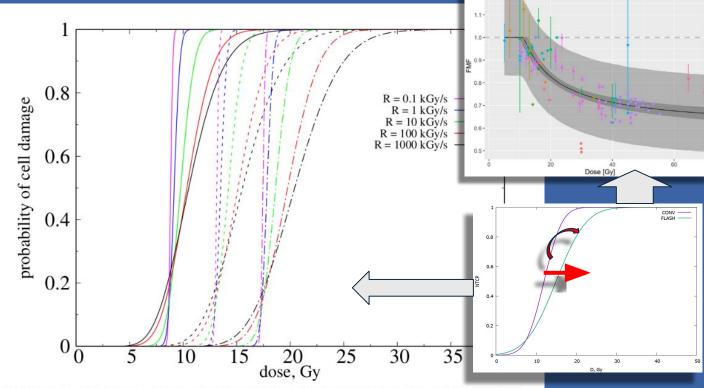


Figure.6.1.-1. The FLASH effect. The cell damage probability vs the absorbed dose and the dose rate (coded by different colors) for $\alpha_{2} = 2$ (solid lines), 3 (dashed lines) and 4 (dot-dashed lines). For all cases $\beta_{cd} = 0.8, M_c = 10, \lambda_r = 1/600 \, s^{-1}, D_w = 0.01 \, nm^2/ns.$

THE TUSCANY HEALTH ECOSYSTEM

Phenomenological stochastic model: conclusions and plans

- We have pointed out a new mechanism of the Ultra High Dose Rate dependance of the biological response to ionizing radiation the homogenization of the radiation-generated ion/radical concentration due to the inter-track diffusion.
- We present a simple theory of the diffusive relaxation of mesoscopic, non-thermodynamic fluctuations of radical concentration and its application to the dose rate (FLASH) effect in radiotherapy.
- The conclusions of the model are in qualitative agreement with the recent review [Böhlen et.al.] of the available experimental results of the FLASH sparring effect for normal tissue complications probability.
- In particular, the model predicts the increase of the FLASH effect at higher doses and also the threshold (minimal dose) below which the FLASH sparring is not observed.
- The model will be extended to a pulsed dose deposition especially in application to the electron beam RT (EBRT).
- The model in combination with ML techniques will be used to analyze the experimental data of the local damage and cellular damage in EBRT and to optimize the UHDR protocols.
- The model will be confronted with the systematic microscopic approaches and microdosimetric kinetic models in order to validate approximations and incorporate further improvements.

CNIRNAN

M1.2.1 Developed and implemented multi-scale procedure for the in silico simulation of the UHDR

- Interfacing different tools for multi-scale simulations
- Optimizing Hamiltonian and models
- Performing simulations

M1.2.2 Radiobiological effects at UHDR vs. CONV and radiation parameters

- Analyzing data and understanding phenomenology
- Developing predictive macroscopic models for the effect– irradiation parameters relationship
- Cross-validation of simulations-vs-experiment