Consiglio Nazionale delle Ricerche Rome, February 18th-19th, 2025

Trait syndromes and intraspecific responses to fire regimes of Mediterranean reseeder and resprouter woody plants

Gianluigi Ottaviani^{1,2}, Mathieu Millan³, NBFC Wildfire-Biodiversity WG

¹Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy

²National Biodiversity Future Center (NBFC), Palermo, Italy

³32153 Route de Mende, Montpellier, France

Consiglio Nazionale delle Ricerche

Fire = an eco-evolutionary force Plant forms & functions

Full text provided by www.sciencedirect.com

Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems

TRENDS in Ecology and Evolution Vol.20 No.7 July 2005

William J. Bond¹ and Jon E. Keeley^{2,3}

Opinion

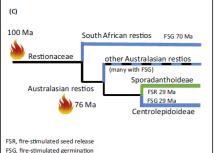
Fire as an evolutionary pressure shaping plant traits

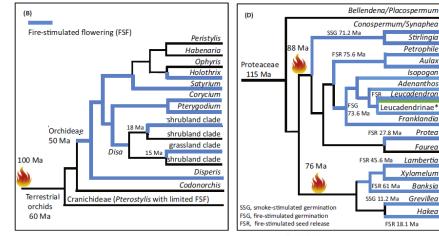
Jon E. Keeley^{1,2}, Juli G. Pausas³, Philip W. Rundel², William J. Bond⁴ and Ross A. Bradstock⁵

A Burning Story: The Role of Fire in the History of Life

JULI G. PAUSAS AND JON E. KEELEY
Research
Phytologist

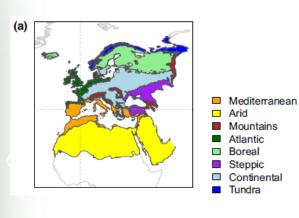
Banksia born to burn

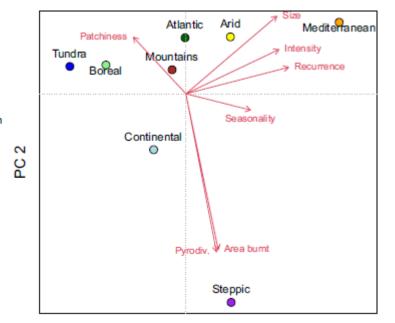

Tianhua He^{1,2}, Byron B. Lamont¹ and Katherine S. Downes¹ ¹Centre for Ecosystem Diversity and Dynamics, Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia; ²School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia


Rome, February 18th-19th, 2025

Wigley et al. 2020 Aust J Bot

(A) 135 Ma Serotinous with branch shedding or bark >30 mm thick Pinus Pinus Bark >15 mm thick Pinus Pinus Pinus Serotinous Pinus Serotinous Pinus Serotinous Pinus Serotinous Bark >15 mm thick Pinus Serotinous Bark >15 mm thick Pinus Serotinous Serotinous

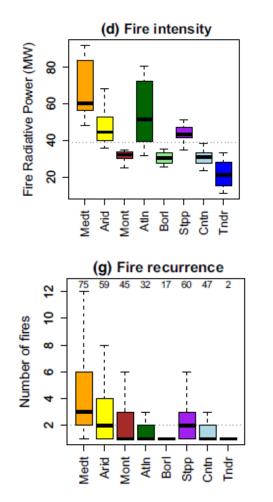

Lamont & He 2017 Trends Plant Sci



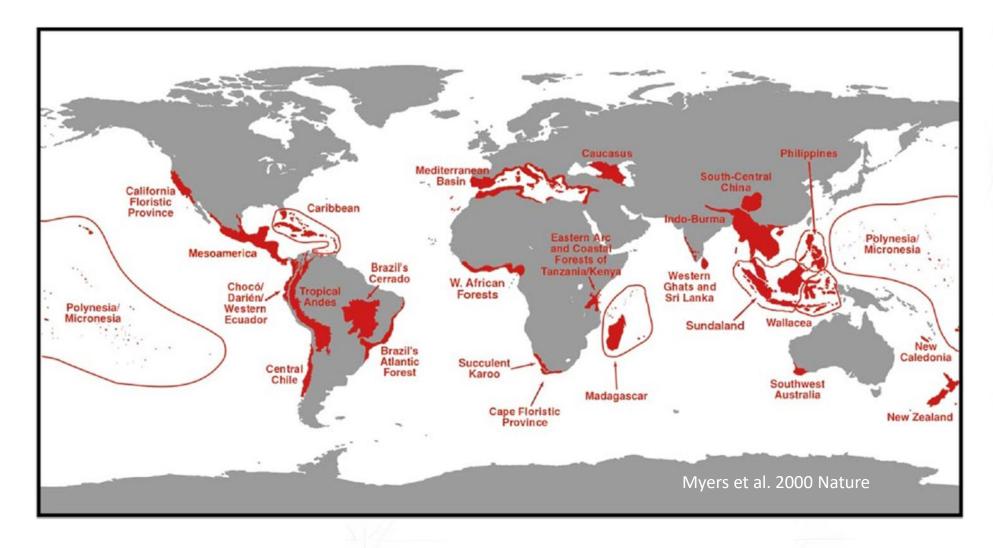
Consiglio Nazionale delle Ricerche

Fire = an eco-evolutionary force Biome distribution & dynamics

Pausas 2022 Glob Ecol Biogeogr

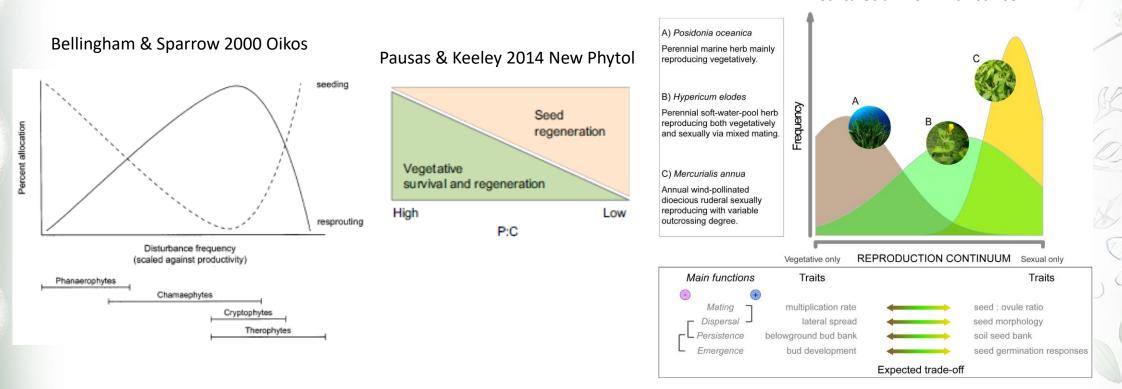


Rome, February 18th-19th, 2025



Rome, February 18th-19th, 2025

Mediterranean-type ecosystems = hotspots of biodiversity & exacerbating threats

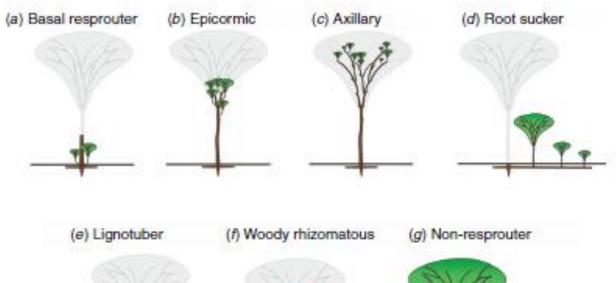


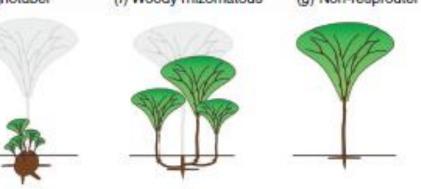
Consiglio Nazionale delle Ricerche Rome, February 18th-19th, 2025

Carta et al. 2024 Funct Ecol

Post-fire plant strategies = resprouters & reseeders

A continuum occurs between obligate resprouters & reseders, i.e. facultative strategies

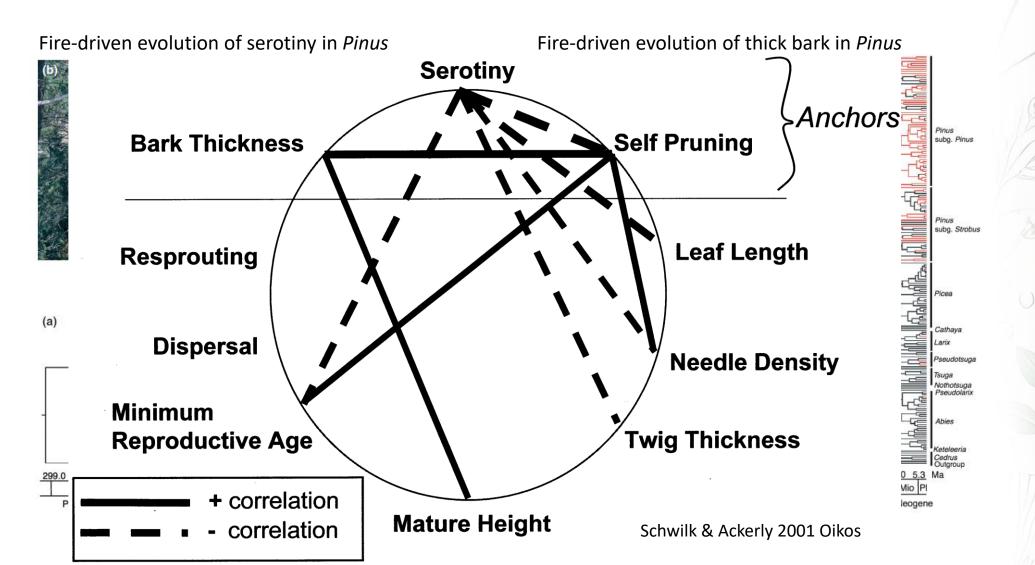

Rome, February 18th-19th, 2025



Post-fire plant strategies = <u>resprouters</u> & reseeders

Wigley et al. 2020 Aust J Bot

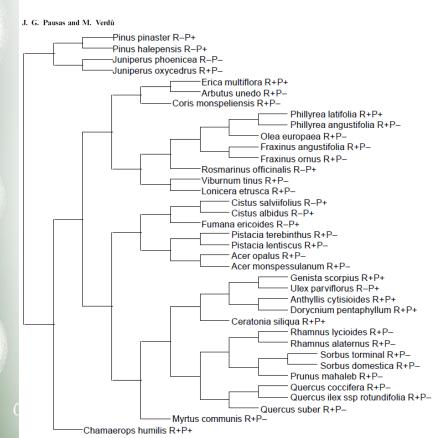
(modified from Clarke et al. 2013 New Phytol)

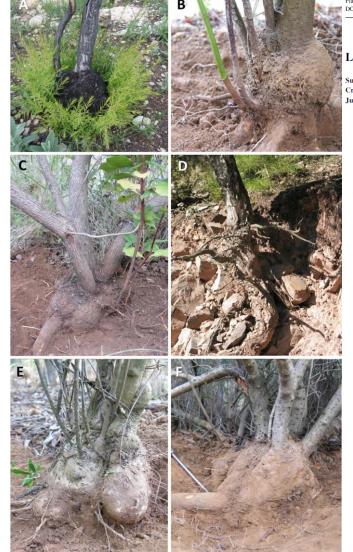


Rome, February 18th-19th, 2025

Post-fire plant strategies = resprouters & <u>reseeders</u>

Rome, February 18th-19th, 2025




Mediterranean Basin = an aridity- and fire-driven hotspot of biodiversity & exacerbating threats

OIKOS 109: 196-202, 2005

Consiglio Nazionale delle Ricerche

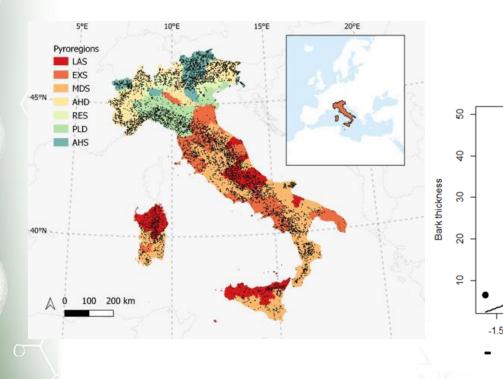
Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach

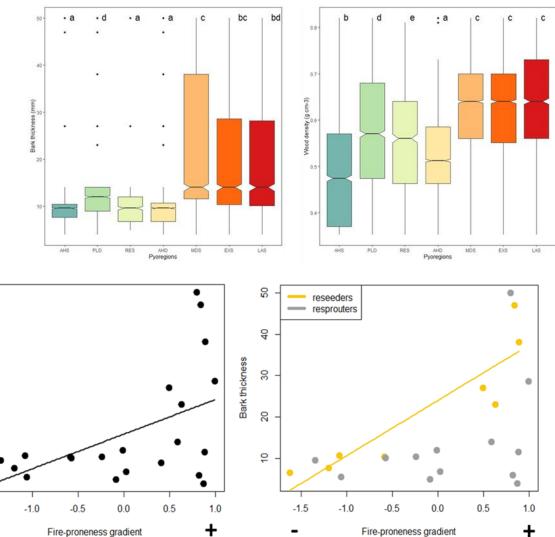
Plant Ecol (2016) 217:661-676 DOI 10.1007/s11258-015-0538-9

Lignotubers in Mediterranean basin plants

Susana Paula · Paulette I. Naulin · Cristian Arce · Consttanza Galaz · Juli G. Pausas 🖸

Rome, February 18th-19th, 2025


Mediterranean Basin = an aridity- and fire-driven hotspot of biodiversity & exacerbating threats


Are trait responses of tree species across pyroregions indicative of firemodulated plant functional strategies?

Authors' list

Consiglio Nazionale delle Ricerche

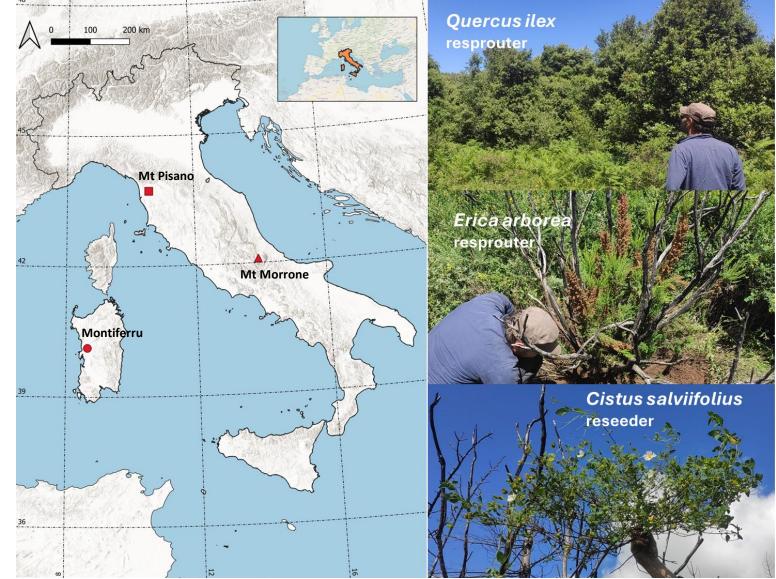
José Maria Costa-Saura, Gabriele Midolo, Carlo Ricotta, Mara Baudena, Carlo Calfapietra, Mario Elia, Paolo Fiorucci, Simone Mereu, Costantino Sirca, Donatella Spano, Gianna Vivaldo, Gianluigi Ottaviani

Rome, February 18th-19th, 2025

Study goal: Examining trait syndromes & post-fire intraspecific responses of Mediterranean reseeder and resprouter woody plants

Q1. Do resprouter and reseeder species differ in their trait coordination?

Q2. Do trait patterns indicate fire-modulated plant responses to changes in fire regime?


Q3. Does fire regime affect trait coordination relationships?

Consiglio Nazionale delle Ricerche

Rome, February 18th-19th, 2025

Study system Sites Species Post-fire strategies

Rome, February 18th-19th, 2025

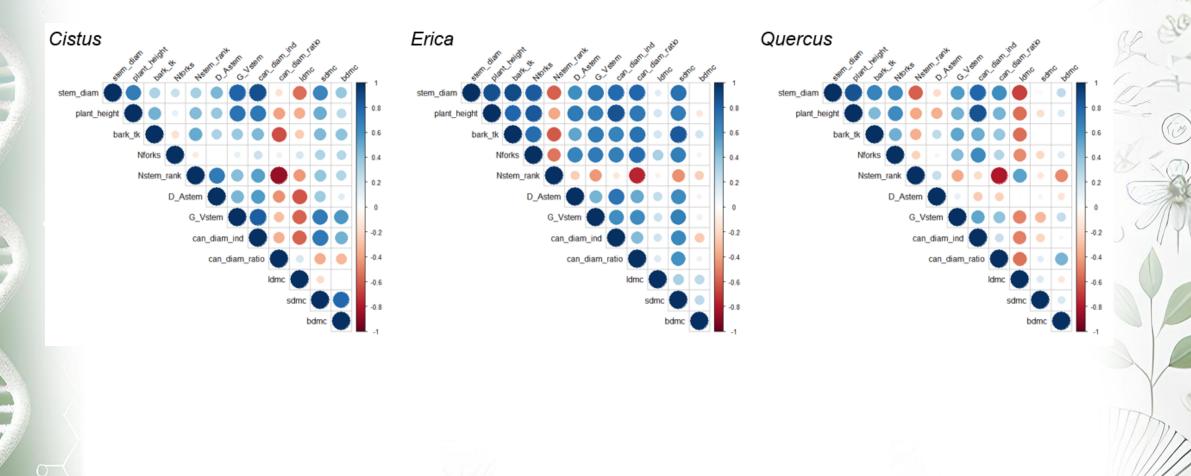
Study system Plant functional traits (some): informing on fire-related strategies & fitness

RAIT	MAIN PLANT & ECOSYSTEM FUNCTION(S)	ORGAN	
Bark thickness (mm)	Protection from disturbance (mainly	Stem base	
	fire); Resource storage		
elowground coarse organ dry matter	Resource (water) conservation; Plant lifespan	Thick root,	
ontent [BDMC] (mg g ⁻¹)		lignotuber	
eaf dry matter content [LDMC] (mg g ⁻¹)	Resource (water) conservation; Leaf and	Leaf	
	plant lifespan; Resistance to herbivory;		
	Flammability; Litter decomposability		
Plant height (cm)	Aboveground biomass allocation & vertical	Stem	
	space occupancy; Light capture; Escape from		
	disturbance trap(s)		
atio between generative and vegetative	Main reproduction type; Generative vs	Stem bearing	
tems (%)	vegetative reproduction effort	flowers and/or	
		fruits	
atio between dead and alive stems (%)	Disturbance damage; Mortality/vitality	Stem	
Stem dry matter content [SDMC] (mg g ⁻¹)	Resource (water) conservation; Plant	Stem	
	lifespan; Flammability; Structural support		
tem diameter (cm)	Response to aridity, Aboveground biomass	Stem base	
	allocation		

Rome, February 18th-19th, 2025

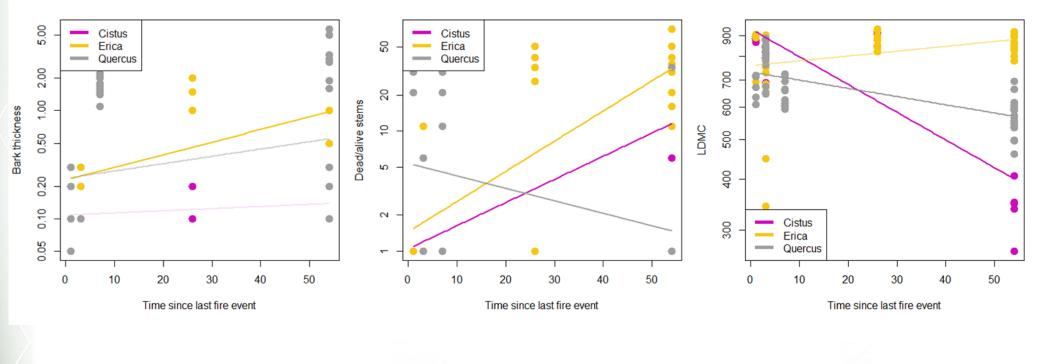
Study system & sampling design Fire regimes

						Species		
						Resprouter		Reseeder
			Time		Fire return			С.
			since last	Number	interval	Q. ilex	E. arborea	salviifolius
Site	Plot type	Year Burnt	fire (yrs)	of fires	(=yrs/(#fires+1))	(n=50)	(n=40)	(n=30)
	Control – Holm oak	<1970	54	0	54	10		5
	Control – Mix	<1970	54	0	54	10		
	2 Fires	1994, 2021	3	2	18	5	10	10
	3 Fires	1983, 1994, 2021	3	3	13.5	10	5	
Mt Morrone	1 fire	2017	7	1	27	10		
	2 Fires	2017, 2023	1	2	18	5		
	Control – Pine	<1970	54	0	54		10	
	1 fire	1998	26	1	27		10	5
	2 Fires	1998, 2023	1	2	18		5	10



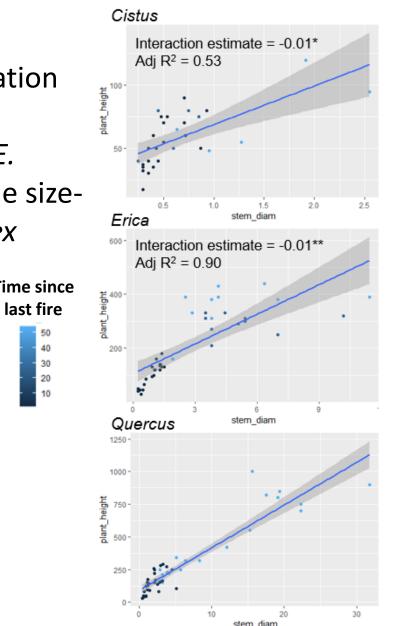
Rome, February 18th-19th, 2025

Q1. Do resprouter and reseeder species differ in their trait coordination? **A1.** Yes they do differ, as there are differences between resprouters



Rome, February 18th-19th, 2025

Q2. Do trait patterns indicate fire-modulated plant responses to changes in fire regime?


A2. Yes they do, and responses are species-specific & not necessarily aligning with post-fire strategy (life history classification)

Consiglio Nazionale delle Ricerche

Q3. Does fire regime affect trait coordination relationships? A3. Yes for C. salviifolius (reseeder) and E. arborea (resprouter) - e.g. weakening the sizerelated allometric link – but not for *Q. ilex* (resprouter) **Time since**

Rome, February 18th-19th, 2025

20 10

Consiglio Nazionale delle Ricerche

CNR IRET Conference

Rome, February 18th-19th, 2025

Takeaways

1. Plant species are not homogeneous entities, even less so are life histories; the dichotomy between reseeder and resprouter plant strategies is more nuanced – when including intraspecific variability (being trait- and context-dependent)

2. *A priori* classifications of life histories, including post-fire strategies (e.g. reseeders vs resprouters, life forms), can constitute powerful tools to examine species and functional patterns at coarser scales. At finer scales considering species-specific patterns and intraspecific variability can refine our understanding of how plants may cope with changes in the environment (e.g. fire disturbance) – useful information to estimate cascading effects on ecosystem functioning & for restoration purposes

This research is supported by NBFC (National Biodiversity Future Center) funded by the Italian Ministry of University and Research, P.N.R.R., Missione 4 Componente 2, "Dalla ricerca all'impresa", Investimento 1.4, Project CN00000033 (financed by the European Union – NextGenerationEU).

A special thank goes to Mara Baudena (CNR-ISAC), Heath Beckett (Stellenbosch Uni, SA), José Maria Costa-Saura, Costantino Sirca, Mauro Lo Cascio (UniSS), Marta Magnani (CNR-IGG), Silvia Portarena, Ettore D'Andrea (CNR-IRET) for conceptually contributing to the study or helping with field- & lab-work.

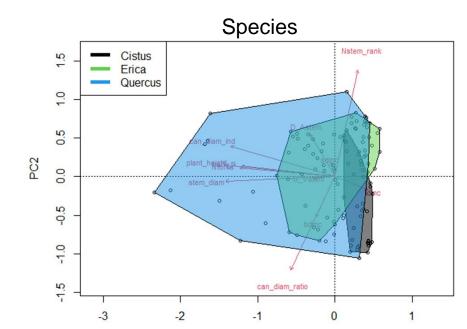
Extensions of this trait-based research are undergoing with 2 students (1 Master @ UniTO, 1 PhD @ UniGE & CIMA).

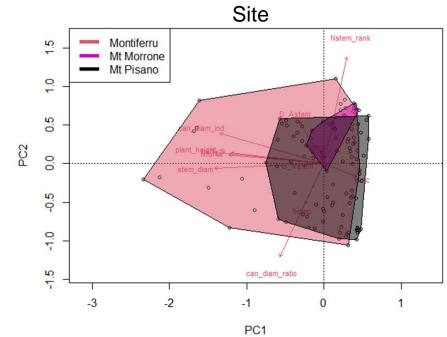
Thanks for your attention!

61

Consiglio Nazionale delle Ricerche

Rome, February 18th-19th, 2025




Consiglio Nazionale delle Ricerche

PC1

