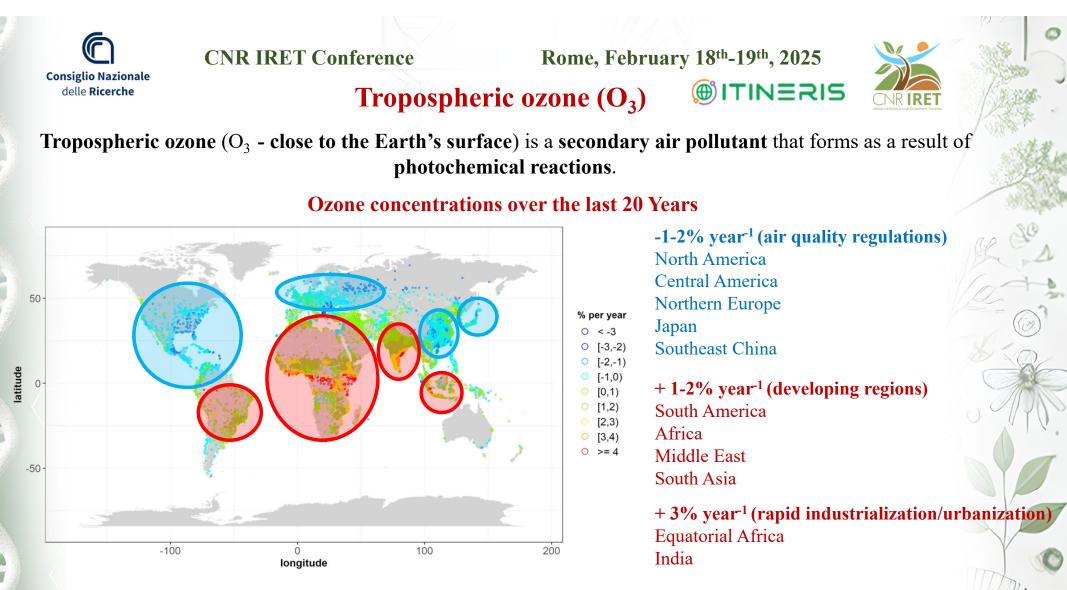
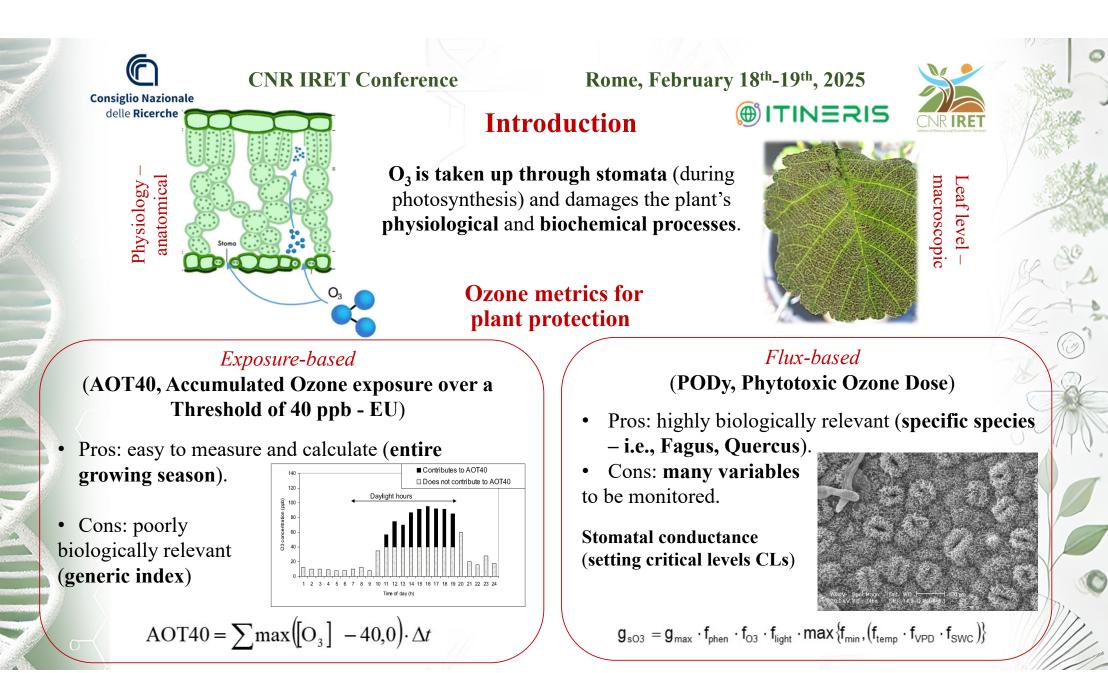
Consiglio Nazionale delle Ricerche

CNR IRET Conference


Rome, February 18th-19th, 2025


An experimental infrastructure for realistic experiments in Mediterranean Europe FO₃X (Free air O₃ eXposure)

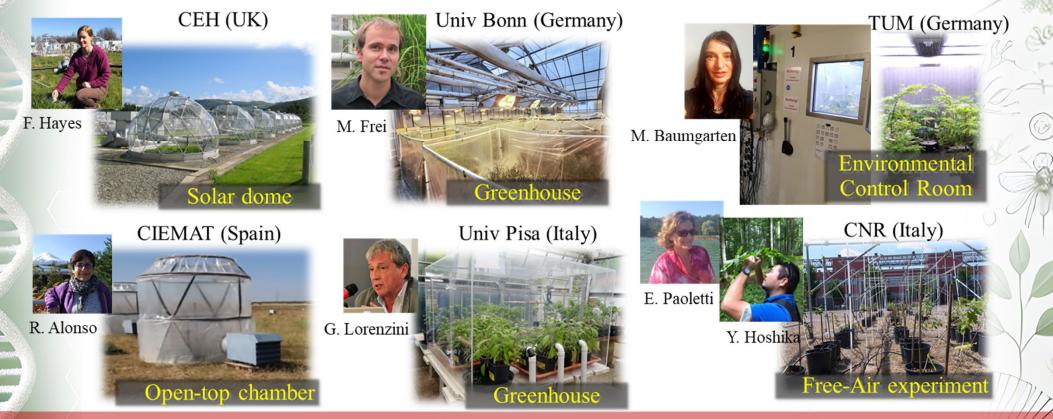
<u>E. Marra¹</u>, E. Paoletti ^{1,2}, B.B. Moura ^{1,2}, J. Manzini ^{1,3}, A. Viviano ^{1,3}, L. Lazzara ¹, Y. Hoshika ^{1,2} ¹IRET-CNR, (FI) ²NBFC, (PA) ³DAGRI-UNIFI, (FI)///



Global trends (2000-2019) in urban areas (> 50,000 inhabitants) show that ozone levels are still increasing - people and ecosystems are being exposed to dangerous levels of ozone.

2100: **40-55 ppb**

Sicard et al., 2


Rome, February 18th-19th, 2025

Current ozone exposure experiments in Europe

CNR IRET Conference

Since the 1970s, controlled and open-top chambers have been used to study the effects of O_3 on plant growth and crop yields – artificial/controlled conditions (which may influence how plants absorb O_3) and plant size.

FACE (field conditions) offering a more realistic open-air environments to better estimate plant responses to ozone

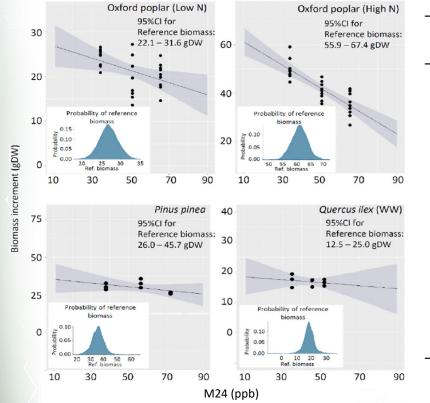
Rome, February 18th-19th, 2025 **CNR IRET Conference Consiglio Nazionale** Free-air O₃ eXposure (FO₃X) ITINERIS delle Ricerche 5 FACE systems worldwide - FO₃X the only one located in a Mediterranean climate AnaE Sesto Fiorentino FO₃X

Set-up description:

- The design is a **split-plot experiment**.
- The facility permits to expose the plants to three levels of O₃ concentrations. Each O₃ treatment is replicated three times (total 9 plots 5 X 5 X 2 m).
- A vertical network of vent pipes disperses the mixture of ambient air and O₃ (generated from pure oxygen) across the plots to simulate realistic exposure.

• The air containing O₃ is injected through 25 teflon tubes hanging down from a fixed grid above the plants.

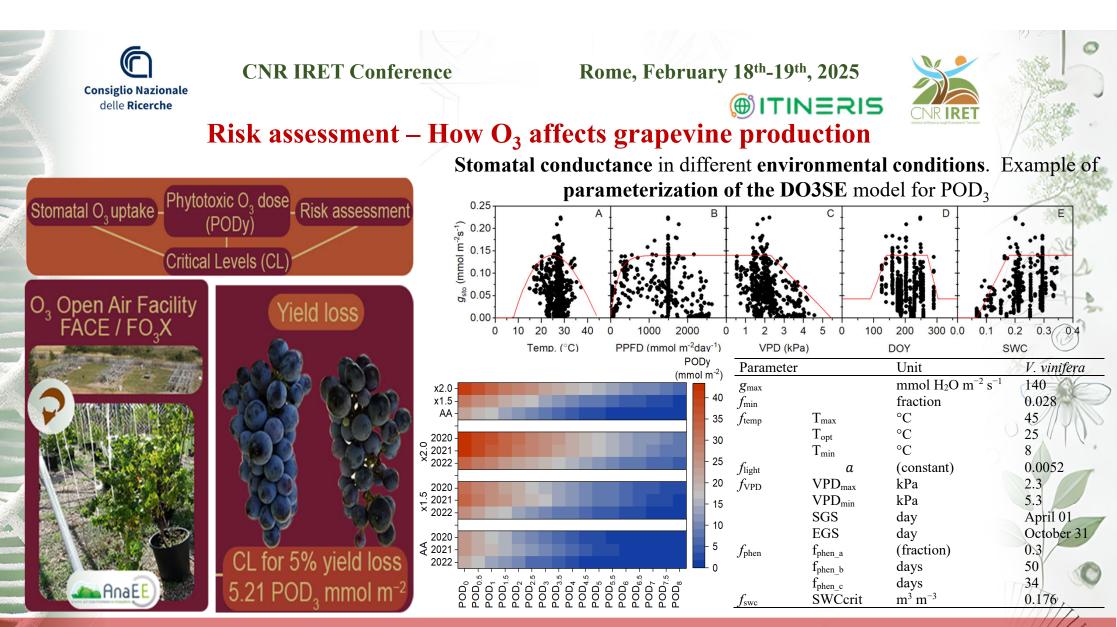
• The O₃ concentration and all main environmental variables are continuously monitored.


CNR IRET Conference Rome, February 18th-19th, 2025 **Consiglio Nazionale** Free-air O₃ eXposure (FO₃X) () ITINERIS delle Ricerche **VRIRE** A meteorological station monitors the climate conditions FO₂ (temperature, pressure, RH, PAR, GR, wind speed and direction), air vapor pressure deficit O₃ concentration, NOx concentration Additional stress 2 Additional stress 1 Additional stress 0 Amblent ozone (AA) Intermediate ozone (O 31) High ozone (O ,2) 100 50 A 8000 о°) 80 Ê 40 -₆₀₀₀ ≷ Temperature (05 10 -60 bitation (30 adiatic adiatic <u>Solar</u> 0005--20 ក្តី Main wind 120 — AA ---x1.5 в 100 x2.0 (qdd) 60 റ്₁₀ 20 O₂ Anemometer Data logging generator 0. and 290 Days of the year (DOY) 192 242 292 161 211 261 311 40 190 240 142 control system mblent air Years of exposure 2020 2021 2022 TO FTP LAN O₃-enriched air server Sampling pipes Air Pump Venturi tube O, analyzer M Servovalve Electrical connections

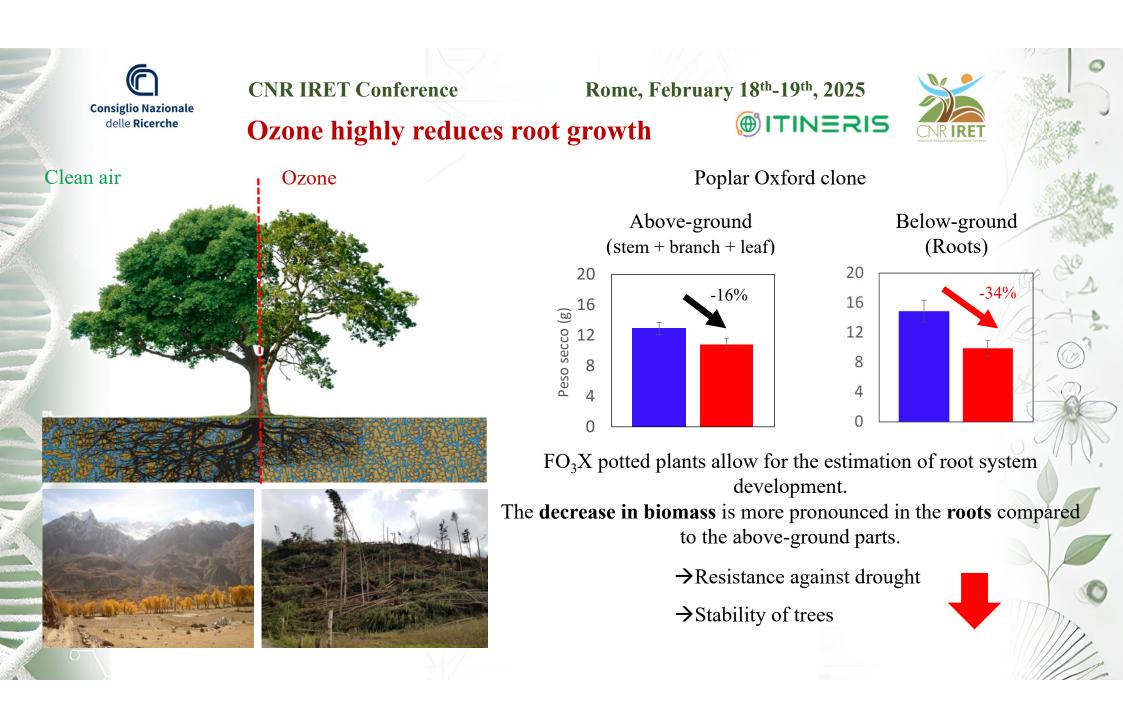
Rome, February 18th-19th, 2025

Ozone Risk Assessment

The application of various **treatments (differing O₃)** allows to analyze the relationship between O₃ and biomass variation. It is possible to parameterize species-specific gs and establish Critical levels (CLs - i.e. 4 or 5% decrease in biomass or yield), defined by the Phytotoxic Ozone Dose (POD).


Consiglio Nazionale

delle Ricerche


CNR IRET Conference

Species	PODy (mmol m ⁻²)	CL	Reference
Saccharum officinarium	POD ₂	1.04	Moura et al., 2018
Quercus ilex	POD_0	6.90	Hoshika et al., 2018
Quercus pubescentis	POD ₀	6.90	Hoshika et al., 2018
Quercus robur	POD_0	3.60	Hoshika et al., 2018
Populus oxford	POD ₄	4.60	Lu Zhang et al., 2018
Moringa oleifera	POD ₄	1.10	Moura et al., 2021
Eugenia unifolia	POD_0	3.60	Engela et al., 2021
Vitis vinifera	POD ₃	5.21	Moura et al., 2024

Setting the CLs allows to identify the threshold of susceptibility to O_3 to prevent detrimental effects

A three-year free-air experimental assessment of ozone risk on the perennial Vitis vinifera

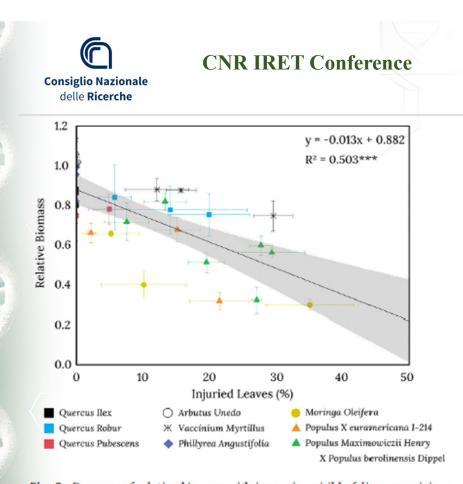


Fig. 3. Decrease of relative biomass with increasing visible foliar ozone injury in plants exposed to season-long ozone FACE experiments. The original results are published in (Moura et al., 2021; Hoshika et al., 2018; Zhang et al., 2018; Pellegrini et al., 2021; Hoshika et al., 2022)or unpublished (A. unedo, P. x euramericana). The total biomass is expressed as ratio of the control plants (exposed to ambient ozone exposure) versus the plants exposed to enriched ozone atmospheres (usually 1.5- and 2.0-times ambient ozone). The number of visibly injured leaves is expressed as a percentage of the total number of leaves. Bars show the standard errors. The linear regression line shows 95% confidence intervals in grey.

Rome, February 18th-19th, 2025

Biomass and VFI

Biomass losses increase with increasing visible foliar injury under O₃ exposure

Sustainable Horizons 2 (2022) 100018

Contents lists available at ScienceDirect

Sustainable Horizons

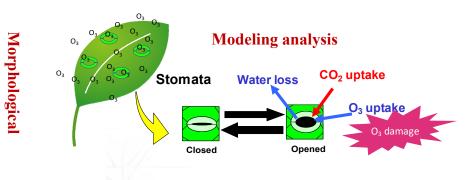
journal homepage: www.elsevier.com/locate/horiz

Towards long-term sustainability of stomatal ozone flux monitoring at forest sites

Elena Paoletti^{1,*}, Pierre Sicard², Yasutomo Hoshika¹, Silvano Fares³, Ovidiu Badea⁴, Diana Pitar⁴, Ionel Popa⁴, Alessandro Anav⁵, Barbara Baesso Moura¹, Alessandra De Marco⁵

CNR IRET Conference

Rome, February 18th-19th, 2025


National and international collaborations (Since 2015)

10 countries - UNICAMP, IPA, Univ Sao Paulo (Brazil), CAS, NUIST, North East Agr Univ (China), CFI (Croatia), INRA, Univ Lorraine, ARGANS (France), Univ Freiburg, Univ Würzburg (Germany), UNIPI, UNIFI, UNITUS, CREA, Roma Sapienza Univ, ENEA (Italy), Univ Hokkaido, TUAT (Japan), INCDS (Romania), SFI (Slovenia), WSL (Switzerland), and 48 visiting researchers.

29 Plant species fumigated at FO₃X so far: Acer platanoides L. var. "Crimson king", Alnus glutinosa (L.) Gaertn, Arbutus unedo L., Carpinus betulus L., Coffea arabica L., Cupressus sempervirens L., Moringa oleifera Lam., Ostrya carpinifolia Scop., Populus × canescens (Aiton) Sm., Populus deltoides W. Bartram ex Marshall x Populus nigra L. clone i21, Populus maximowiczii Henry x Populus berolinensis Dipper – Oxford clone, Passiflora edulis Sims., Phaseolus vulgaris L., Phillyrea angustifolia L., Phoenix dactylifera L., Pinus halepensis Mill., Pinus pinaster Aiton., Pinus pinea I., Punica granatum I., Quercus ilex I., Quercus pubescens Wild., Quercus robur I., Robinia pseudoacacia I., Rubus ulmifolius Schott., Saccharum officinarum L.

About 30 scientific research papers published.

CNR IRET Conference

Rome, February 18th-19th, 2025

ITINERIS

ITINERIS AnaEE API

#harmonization

collaboration

^{#implementation}

Enhancing Environmental Research with ITINERIS Metadata Base

Background:

- Environmental data are crucial for understanding global changes.
- Current practices often hinder data accessibility and sharing.

ITINERIS Goals:

- Establish ITINERIS Hub for unified access to environmental data - Focus on high-quality metadata for efficient data exploration.

Methods:

- Implemented metadata base using MVC architecture (Model-View-Controller).
- Model (Service Layer, Repository Layer) manages data and business logic.
- View (Swagger UI) facilitates user interface and data presentation.
- Controller manages data flow between Model and View, exposing RESTful APIs.
- MongoDB chosen for scalable data management without predefined schema.

Conclusion:

- Continuous improvement of metadata base through stakeholder collaboration.
- Promotes harmonization, standardization, and data sharing across ITINERIS infrastructures.
- Initial step towards establishing ITINERIS Hub for comprehensive environmental research.

() ITINERIS

61